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Ingenieŕıa Computacional

Autor: Director:
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To Juan J. Aznárez, for being the first who trusted me, and for giving me the chance of
being part of such an excellent group, the Continuum Mechanics and Structures Division
of the SIANI University Institute. To him and to Orlando Maeso for the continuous
advises and support along these years. I would also like to thank the rest of professors
and colleagues of the Research Group, and more especially to Cristina Medina, Jacob
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Chapter 1

Introduction

1.1 Motivation and background

While it is true that nowadays there is considerable knowledge in seismic engineering,
the fact is that earthquakes keep on killing at least thousands of people annually, even
tens of thousands in specific years [1]. To make matters worse, the damage to urban
areas, cities and civil infrastructures becomes completely devastating. As in any type
of catastrophic situation, not all regions of the planet have the capacity to recover in
the same way. That is why it is completely necessary and essential to develop new and
cheaper techniques for the design and calculation of earthquake-resistant structures.

To do so, it is very common in engineering the resolution of dynamic problems involv-
ing the propagation of mechanical waves through continuous media. The analysis of the
response of structures or mechanical parts to variable loads over time, as an earthquake,
requires high levels of precision in the search for more optimized and safe designs. It
has become a common problem and no longer constitutes a closed shop typical of large
studios and engineering companies.

The way in which the soil properties and motion influences the response of the struc-
ture and, in turn, the motion of the structure interacts with the soil response is usually
called as Soil-Structure Interaction (SSI). This concept refers to both static and dynamic
phenomena mediated by a compliant soil and a stiffer superstructure. Frequently, struc-
tural calculations neglect SSI which often leads to over-conservative designs. However,
as will be shown, SSI can also convey detrimental effects in the system response for some
particular cases. The literature collects a multitude of evidences about the existence
of scenarios where the SSI must be taken into account. When a structure is partially
embedded into the ground, and also when the site class is constituted by soft soil, SSI
becomes decisive. The proper design on the foundation plays a significant role, and
mitigate the detrimental effects.

This thesis focuses on the particular case of pile foundations, and tackles different
problems involving the dynamic and seismic response of piles and piled structures taking
into account dynamic SSI effects and nonlinear phenomena developed either on the pile-
soil system or in the superstructure. More precisely, one part of the dissertation proposes
a linear equivalent boundary element – finite element coupled model (BEM-FEM) for the
analysis of the dynamic response of pile foundations considering degradation along the
pile-soil interface. The other part of the dissertation studies different ways of building a
numerical model for the analysis of the seismic response of piled viaducts, and uses such
a model to analyse the influence of many different aspects, including for instance, the



benefits of employing inclined elements in the pile foundations.
The developed codes for the soil-foundation analysis are verified obtaining results

for some basic problems already known, or for other problems, in general of unknown
solution, which are solved with the programs available in the research group. A careful
calibration of the model parameters is necessary to guarantee stability and accuracy
in the results. The corresponding parametric studies are carried out depending on the
characteristics of the structure, the type of solicitation and the nonlinear nature of the
problem.

The Ph.D. Candidate has been attached to the University Institute of Intelligent Sys-
tems and Numeric Applications in Engineering (SIANI from its Spanish initials: Sistemas
Inteligentes y Aplicaciones Numéricas en Ingenieŕıa), specifically to the Continuum Me-
chanics and Structures Division. The SIANI Institute has been active for two decades
and has appropriate facilities, including a high performance data processing center that
houses a general purpose calculation cluster, located at the central building of the Science
and Technology Park of the Universidad de Las Palmas de Gran Canaria.

The Group in which the Ph.D. Candidate is integrated has worked for more than
thirty years in the development of FEM, BEM and BEM-FEM models for the dynamic
analysis of structural mechanics problems where the effects related with SSI phenomena
are crucial, although only in the linear range of their behaviour. Thus, in recent years,
the contributions made in the form of models and software in this field are considerable,
as well as the deep study of specific problems of interest: seismic response of dams,
buried structures and building structures founded on piles.

1.2 Objectives

Linear analysis may be adequate in many cases. In others, however, it is necessary to
use models that are able to incorporate also nonlinear phenomena. The objective of
this Thesis is to advance in the numerical modelling of nonlinearities in dynamic SSI
problems, and has aimed to advance the development of the Research Group’s software
including formulations that allow addressing problems with nonlinear behaviour in the
field of dynamic SSI. The resulting models allow a more realistic analysis of practical
problems.

The thesis has, as its first objective, the formulation and implementation of a coupled
model of finite elements and boundary elements for the dynamic analysis of pile founda-
tions that exhibit a nonlinear behaviour in the contact between the pile and the soil. It
takes into account, through an equivalent linear model, the soil degradation around the
piles.

The second objective is the development of a tool for the analysis of the nonlinear be-
haviour of structures taking into account the dynamic SSI and the frequency-dependent
reaction forces of the soil-foundation system.

To achieve these general objectives, a sequence of partial objectives has been accom-
plished:

• Development of an equivalent linear BEM-FEM model for the approximate analysis
of the time harmonic lateral response of piles considering soil degradation along
the soil-pile interface.

• Study of the theoretical bases of the Lumped Parameter Models (LPMs), and
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implementation of linear step-by-step schemes for the study of structures founded
on piles.

• Study of the selection criteria and treatment of seismic signals.

• Analysis of the influence on the superstructure response of the type of damping
modelling for the soil domain.

• Analysis of the influence on the superstructure response of the type of lumped
parameter representation of the soil-foundation system.

• Implementation of the nonlinear behaviour laws associated to the superstructures
included in this study, i.e. bridge piers. Development of substructuring schemes
for their response analyses.

• Analysis of the influence of SSI effects on the nonlinear dynamic response of piled
bridges and viaducts.

• Evaluation of the damage reduction in viaduct superstructures when inclined piles
are used in the foundation.

1.3 Literature review

1.3.1 Soil-pile foundation modelling

The dynamic and seismic response of piles under linear-elastic assumptions constitutes
a topic that has received significant attention. The time-harmonic dynamic response of
pile foundations, whose knowledge allows the use of substructuring approaches for the
analysis of piled structures, has been studied through a number of approaches: analytical
solutions (see e.g. [2–4]); simplified semi-analytical procedures, including Winkler-type
models (see e.g. [5–11]); and through different numerical techniques such as the FEM
(see e.g. [12–14]), the BEM (see e.g. [15–17]), or BEM-FEM schemes assuming Green’s
functions or BEM formulations for the soil, and structural monodimensional elements
for the piles (see e.g. [18–26]).

Each one of the different approaches to the problem has advantages and disadvan-
tages. Rigorous analytical solutions are usually oriented to a specific problem, lacking
versatility and generality. On the other hand, they accurately reproduce the physics of
the problem with very low computing efforts. Winkler-type models consume low com-
putational resources and their simplicity makes them easy to handle, but are not always
able to incorporate aspects such as pile-to-pile interaction, radiation damping or the
effects derived from the three-dimensional character of the problem. FEM models can
be very versatile and flexible, being the difficulty in modelling unbounded regions (such
as the soil) one of their major disadvantages. BEM models require meshing only the
boundaries and interfaces of the problem, with the corresponding reduction in numbers
of nodes and elements. At the same time, allows to obtain results of high accuracy not
only in displacements but also, for instance, in tractions. In any case, one of the biggest
advantages is the implicit treatment of unbounded domains. On the contrary, the models
are limited by the available fundamental solutions, and the resulting matrices (which are
generally non-sparse) and the effort needed to evaluate the fundamental solution, may
increase the computational cost.
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The dynamic response of pile foundations taking different types of nonlinearities into
account has also received a significant amount of attention. Thanks to empirical tests
that provide information about the different mechanisms and aspects involved, numerical
methods of analysis for this problem have been proposed in the literature. The nonlinear
effects in soil-pile foundation systems studied by empirical dynamic analyses cover full-
scale systems, e.g. [27–31], scaled 1g experimental models, e.g. [14,32–35], and centrifuge
tests, e.g. [36–40]. Among all developed numerical methods, they include Beam on
Nonlinear Winkler Foundation (BNWF) approaches, finite element formulations, and
models that consider a weak zone in the soil around the pile. It has been a hard task
for researchers to propose reliable and complete models that account for different types
of dynamic nonlinearities involved in the problem.

BNWF models (see e.g. [41–48]) are popular due to the possibility of implementing
all kinds of geometrical and material behaviour laws with limited complexity, which
makes them versatile and computationally not very costly. However, modelling the soil
medium through a series of one-dimensional springs, usually uncoupled among them,
constitutes an approach with limitations when it comes to taking into account the three-
dimensionality of the problem, and specially in stratified or anisotropic soils. At the
same time, the characterization of the laws of the nonlinear springs is not a trivial task,
and involves a significant amount of uncertainty. For instance, Rhamani et al. [49] found
recently that BNWF models fail to predict accurately the response of soil-pile systems
under dynamic or seismic loads even if they incorporate API p-y curves or more specific
p-y curves derived from continuum models. Consequently, they recommended the use
continuum models.

Gerolymos et al. [46] found a good agreement between results of a BNWF model and
those of a nonlinear FEM for the dynamic analysis of piles including soil and interface
nonlinearities. In fact, models based on finite element formulations are also very popular
(see e.g. [50–52]). They can be advanced, and can incorporate a significant amount
of detail and complexity, but are therefore complicated to set up and verify properly,
and can be computationally expensive. A significant source of uncertainty lies in the
calibration of the different parameters involved, specially those related to the nonlinear
constitutive laws. Mesh and boundary conditions imposed at the edges where the soil
mesh is truncated, are additional sources of uncertainty.

A different approach is based on approximately incorporate to the model the effects
of degradation and lack of bond by including a cylindrical soil zone around the pile whose
shear modulus and material damping differ from those of the outer medium [53–56].

In fact, linear equivalent models can be very appealing if they are able to incorporate
the most significant features influencing the dynamic response of the soil-pile system.
They are computationally very efficient and can be used in substructuring analysis,
in optimization algorithms and in parametric studies. However, traditional equivalent
linear soil models could underestimate the structural acceleration response under seismic
action, as stated recently by Luo et al. [57].

1.3.2 Soil-structure interaction in the seismic response of
bridges

Dynamic SSI has been known, for a long time [58, 59], to be a factor that can affect
significantly the seismic response of structures, being bridges [60–63] a case of particular
interest. When this is the case, the structural model used in the analyses should be
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able to take into account, as rigorously as possible, the complex dynamic response of
foundations such as the pile group. Such response can be efficiently characterized in the
frequency domain when the soil–foundation system is assumed to remain in the linear–
elastic range. However, if non–linear phenomena need to be considered in the bridge
superstructure, the analyses should be carried out in the time–domain. In this case, if
the response of the soil–foundation system is assumed to remain in linear–elastic range,
stiffness and damping functions obtained in the frequency domain to characterize the
response of the foundations can still be incorporated into the analysis, for instance, by
approximating them by pertinent LPMs that can subsequently be used to represent the
response of the soil–foundation system in a substructuring scheme [61, 63–66].

Such LPMs are simple systems, with relatively few degrees of freedom, tuned to
approximate the dynamic response of a different system (for instance, a foundation)
both in the frequency and the time domains. Their application to SSI problems gained
momentum with the seminal papers by Wolf [67,68] proposing the consistent approach,
although other simple schemes had already been previously used [64,69–71]. Thus, there
exist now different possible LPMs, with different levels of complexity and accuracy, that
can be adopted. However, it is still unclear whether it is justified to use complex LPMs
when the aim of the study is analysing the response of the superstructure, and taking
into account the simplifying assumptions and the uncertainty associated to all elements
in the model built to represent the whole system.

Part of such uncertainty resides in the model adopted to represent the behaviour of
the soil. The absence of non–linear response in the foundation is a common simplifying
hypothesis, justified by the fact that, in general, foundations must be designed and de-
tailed to avoid substantial permanent deformations [72] and because of the complexity of
dealing with the frequency–dependent non–linear nature of soil. Another assumption is
related to the model of energy dissipation in the soil. In this regard, classical frequency–
independent material damping (labelled as “hysteretic damping” by Bishop [73] in 1955)
is the most common choice when the analysis is performed in the frequency domain [74],
partly due to its simplicity. This is the case even though it is well known that it gives rise
to non–causal and irrealizable structural models. Besides, the adoption of this damp-
ing model leads to frequency-response functions with non–zero imaginary parts at zero
frequency, which lacks of physical meaning. However, there exist alternative damping
models that also show a frequency–independent (or quasi–independent) hysteretic damp-
ing but are, at the same time, causal, though rarely used in structural analysis. For such
damping models to be causal, it is condition both necessary and sufficient to satisfy
the equations of Kramers–Kronig [75], which relates the real and the imaginary parts
of the mathematical model. The first hysteretic damping model both causal and with
a damping rate almost frequency–independent was proposed by Biot [76] in 1958, with
real and imaginary parts both variable with frequency. Later, Makris [77] proposed a
model whose initial premise was the invariability of the damping rate with frequency,
giving rise to a function whose real part is bounded for all frequencies except for the
static value, point at which it tends to −∞. For this reason, the use of Biot’s model is
preferred in this research, even if both are causal models suitable for frequency–domain
SSI analysis, and both provide very close results for low and medium frequencies. In
this respect, and despite the time since its publication, the magnitude of the influence
of the use of Biot’s or the classical hysteretic damping model on the seismic response of
the superstructure is still unclear

The earthquake resistance of civil structures is based on the concept of energy dis-
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sipation, since it would be economically unfeasible to guarantee an elastic response of
structures for severe actions. In the case of bridges, namely for strategic structures
characterised by high costs of construction, the task of reducing the seismic damage,
and hence repair costs after an earthquake, is of paramount important to assure a good
resilience to the society.

Besides the well-known approaches based on seismic passive protection systems,
which foresee the use of isolators (such as elastomeric bearings, lead rubber bearings,
single or double concave friction pendulums) with or without supplementary dissipative
devices (such as viscous dampers) [78–82], the research is also focusing on innovative
solutions that take advantage of the inelastic dissipative capabilities of piers, as demon-
strated by recent numerical and experimental investigations presented in [83–86].

With reference to bridges developing ductile inelastic mechanisms in the piers under
earthquake loading, the role of SSI in the inelastic behaviour has been investigated in the
literature mainly focusing on the effects induced by surface or vertical pile foundations.

SSI effects on inelastic bridge response were studied by Ciampoli and Pinto in
1995 [87] by considering a spread footing foundation. They found that, for the analysed
set of foundation layouts, SSI effects were not significant, as the inelastic demand re-
mained unaffected. One year later, Elnashai and McClure [88] studied the case of bridge
piers on pile foundations, finding that SSI plays a significant role in the response of the
system and thus should be included in the seismic assessment, being ductility demand
significantly affected by the inclusion of piles. Later, Mylonakis and Gazetas [89] found,
through parametric analyses, that SSI in inelastic bridge piers supported on deformable
soil may cause significant increases in the ductility demand of the piers, depending on
the characteristics of the motion and the structure. The work of Jeremić et al. [90],
studying the influence of SSI in the I-880 viaduct, supported this idea and showed that
detrimental effects of SSI can be observed depending on the soil properties and on the
characteristics of the ground motion [89, 90]. Looking more deeply into this issue, the
role of SSI on the collapse of the Hanshin Expressway was analysed by Mylonakis et
al. [91]. The bridge consisted of single circular concrete piers monolithically connected
to a concrete deck with 18 spans in total, founded on groups of 17 piles in layers of loose
to dense sands and moderate to stiff clays. They found that the compliance of the foun-
dation increased the participation of the fundamental mode of the structure, inducing
a stronger response. It was shown that the increase in inelastic seismic demand in the
piers had exceeded 100% in comparison with piers fixed at the base.

The analysis of previous observations concerning the seismic damage in bridge piers
reveals that the characteristics of the induced Foundation Input Motions (FIMs) may
play an important role on the bridge response. In this framework, peculiarities of the
filtering effects exerted by inclined piles, mainly consisting in an overall reduction of
the input motion to the system, are worth of investigation. One of the most important
mechanisms, which characterise the kinematic response of inclined pile foundations, is
constituted by foundation rotations which are responsible of anti-phase displacements
and accelerations of the superstructures, with respect to those induced by the horizontal
components of the seismic action. Cap rotation and horizontal free-field ground motion
become out of phase when inclining piles parallel to the direction of excitation. This
effect depend on the rake angle, as well as on the pile-soil Young’s modulus ratio [92].
Beneficial effects were found in idealised linear systems, e.g. [93–95], but as far as the
author knows, the effects on the ductility demand of bridge piers have not been studied
yet.
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Chapter 1. Introduction

1.4 Structure of the dissertation

As will be seen, the SSI phenomena at hand can be tackled by adopting a substruc-
turing scheme. It allows to study the soil-foundation system and the superstructure
separately. Traditionally, nonlinear effects relevant to the system response have been
structured in three categories, nonlinear material behaviour, geometrical nonlinearities
mainly due to large deformations, and nonlinear boundary conditions. The nonlinear
behaviour could arise either in the soil-foundation system and/or in the superstructure.
The thesis document has been structured in two parts, one focused on the development
of an equivalent linear model for the soil-foundation system, and the other focused on
the nonlinear response of superstructures taking into account SSI effects.

Attending to the soil-foundation system, in the Part I of the dissertation a numerical
model is developed for reproducing the dynamic mechanical behaviour of pile founda-
tions. The model aims to include nonlinear effects due to contact failures and soil yielding
at the soil-pile interface through equivalent linear considerations. First, in Chapter 2, the
problem at hand is defined, and then, the coupled BEM-FEM model is described. The
BEM equations that governs the soil domain behaviour are outlined at the beginning,
just after describing the discretization adopted for the soil boundaries and interfaces,
and for the piles. The FEM equations that govern the piles dynamic behaviour are then
described in detail. Finally, the system modelling section conclude with the implemen-
tations of the equivalent linear coupling equations that link the piles into the soil.

In the second chapter of Part I, i.e. Chapter 3, the model is calibrated for the different
soil degradation levels for its lateral behaviour. For doing so, a multi-domain BEM is
used where the degraded domain is explicitly included in the simulations. The basis
of the multi-domain BEM are briefly presented at the beginning of the section. After
the BEM-FEM calibration is done through horizontal impedance functions of the soil-
foundations systems, verifications of degraded domain damping and varying degraded
domain shape implementations are stated. A significant portion of the content of the
Part I is included in a manuscript already submitted for publication [96].

Part II of the dissertation focuses on the seismic response of bridge piers on pile
groups. This part begins, in the Chapter 4, with the problem definition, the description
of the basis of the adopted design procedure for the bridge piers, and the methodology
description for the computation of the system response. Then, the chapter continues
with the description of the adopted substructuring scheme and the models used for
characterizing the soil-foundation behaviour. Then, the nonlinear modelling assumptions
of the bridge piers are stated, together with the description of the two adopted LPMs,
i.e. the here called “consistent” and “simplified”.

The influence on the computed seismic response of bridge piers on pile groups depend-
ing on the model assumed for the material damping of the soil is presented in Chapter 5.
Also, the type of LPM adopted for reproducing the complex dynamic behaviour of the
soil-pile foundation resistant forces, necessary for time-domain analyses, is analysed in
terms of the bridge pier response. A wide parametric study involving different soil pro-
files and superstructures is carried out in order to be able to draw general conclusions.
The analysis is done into a linear-elastic framework so that the conclusions of the study
provide an informed starting point for the study of the more involved nonlinear case.

Following the conclusions generated through the analyses in the linear range, the
analysis of the nonlinear response of the bridge piers is explained in Chapter 6. Mainly,
the beneficial effects of the use of inclined pile foundations in terms of the damage
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reduction at the bridge piers are shown. Results are presented in terms of ductility
demand and energy dissipated by damping or by yielding. A significant portion of the
content of the Part II has already been published [97], or is part of a manuscript already
accepted for publication [98].

Finally, a summary of the most outstanding achievements and conclusions that can
be drawn from this work is given in Chapter 7. The dissertation finishes discussing future
research directions and developments that could shortly follow this work.

1.5 Published works derived from the Ph.D. Thesis

The work carried out during the realization of the present Ph.D. Thesis have contributed
to different publications and communications. Those are detailed in the following.

1.5.1 Contribution to JCR journals

• F González, LA Padrón, S Carbonari, M Morici, JJ Aznárez, F Dezi, and G Leoni.
Seismic response of bridge piers on pile groups for different soil damping models
and lumped parameter representations of the foundation. Earthquake Engineering
& Structural Dynamics, 48(3):306–327, 2019. [97]

• F González, S Carbonari, LA Padrón, M Morici, JJ Aznárez, F Dezi, O Maeso,
and G Leoni. Benefits of inclined pile foundations in earthquake resistant design
of bridges. Submitted to Engineering Structures, accepted. [98]

• F González, LA Padrón, JJ Aznárez and O Maeso. Equivalent linear model for the
lateral dynamic analysis of pile foundations considering pile-soil interface degra-
dation. Submitted to Engineering Analysis with Boundary Elements, under re-
view. [96]

1.5.2 Conference contributions

• F González, LA Padrón, JJ Aznárez, and O Maeso. Implementation of the con-
sistent lumped-parameter model for the computation of the seismic response of
nonlinear piled structures. In Proceedings of the 10th International Conference on
Structural Dynamics (EURODYN 2017). Rome, Italy, 10–13 September 2017. [99]

• F González, M Morici, S Carbonari, F Dezi, MC Capatti, G Leoni, LA Padrón,
JJ Aznárez, and O Maeso. Lumped Parameter Models for time domain Soil-
Structure Interaction analysis: consistent vs. simplified formulations and effects on
the superstructure response. In Proceedings of the 5th International Workshop on
Dynamic Interaction of Soil and Structure (DISS 17). Rome, Italy, 19–20 October
2017. [100]
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interface degradation





Chapter 2

Problem definition and system
modelling

2.1 Introduction

When piles are subjected to significant dynamic loads, such as those caused by machine
vibration, wind over the superstructure, or seismic actions, high levels of stress and strain
are likely to develop along the pile-soil interface (more probably in the upper parts of the
pile) and induce effects such as soil degradation in the soil region immediately adjacent
to the pile. Separation (gapping) can also occur close to the soil surface due to the low
confinement pressure. These phenomena lead to damaged or imperfect pile-soil interfaces
that should be taken into account in the process of design of pile foundations and piled
structures subjected to dynamic loads.

This Part I of the dissertation aims at proposing a new equivalent linear numeri-
cal model for the approximate analysis of pile-soil systems with degraded or damaged
pile-soil interfaces. The model assumes that the soil immediately adjacent to the pile
shaft develops a certain level of degradation, which is usually a function of depth. It
is well-known that soils that have undergone high levels of strain, experience a process
of reduction of its shear modulus and an increase of its material damping ratio (see
e.g. [101–103]). This is depicted in Figure 2.1, where the representative shape of the
curves of evolution of shear modulus and damping ratio with shear strain are shown.
Depending on the stiffness and type of soil (sand, normal- or over-consolidated clay),
and also on the depth of the water table or soil properties such as the plasticity index,
the variation in the soil shear modulus and material damping ratio as a function of
shear strain is different. Eurocode–8 [72], within its fifth part, Section 4.2.3, states that,
in such cases, the differences between small-strain values of the shear wave velocity and
those compatible with the strain levels induced by the design earthquake should be taken
into account, and provides indications on damping ratios and shear modulus reduction
factors as a function of ground acceleration ratio.

The proposal is based on a coupled BEM-FEM approach, uniting the advantages of
both methods: the piles are modelled as beam with finite elements; the degraded or
imperfect pile-soil interface is represented by distributed springs and dashpots whose
properties vary with depth; and the soil beyond the degraded interface is modelled by
boundary elements. The starting point of this model is another previous one developed
by Padrón et al. [23]. That model is based on the idea of a previous static approach
(Mendonça and Paiva [104]) where it is assumed that the continuity of the soil is not



Figure 2.1: Generic depiction of the variation of the soil shear modulus and the soil
damping ratio as a function of soil shear strain.

altered by the presence of the piles and where the tractions in the pile-soil interface
are considered as a load-line applied within the half-space in the boundary integral
representation of the soil. It allows to simplify the formulation of the model without
significant loss of accuracy in the problems treated. The perfectly bonded compatibility
conditions between pile and soil assumed in that work is generalized in the present to
soil-pile equilibrium equations accounting for contact effects through the inclusion of
the mentioned distributed springs and dashpots between pile and soil load-line. The
formulation can rigorously take into account layered soils and can be generalized to
take into account groups of piles and inclined elements. The parameters that define
the distributed springs and dashpots along the pile-soil interface can later be calibrated
against numerical and empirical results, and can be used in efficient parametric analysis
by substructuring or direct methodologies in the frequency domain.

To this end, the developed numerical tool is defined in Section 2.3, and the reference
and more rigorous tool used for comparison purposes is defined in Section 3.2. Calibration
results are presented in Sections 3.3 in terms of horizontal impedance functions of single
pile foundations. Then, the inclusion of the degradation damping, which has been shown
to be an essential phenomena involved in the system, is validated in Section 3.4. Also,
varying soil degradation through the pile depth is analysed and validated in terms of
horizontal impedance functions in Section 3.5.1, and in terms of displacements along
the pile length in Section 3.5.2. The new formulation is computationally more efficient
and flexible, easing the study of more complex problems. It and can be extended to
study pile groups and generalized to rake piles. On the other hand, the possibility for
incorporating more genuine and complex models of soil degradation is completely open.

2.2 Problem definition

The problem under consideration is depicted in Figure 2.2. A pile is embedded in a
homogeneous or horizontally stratified soil, and is subjected to time harmonic loads
(horizontal, vertical or rocking) applied at the pile head. The pile, of length L and di-
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Non-degraded 

soil

Non-degraded 

soil

Figure 2.2: Depiction of the problem.

ameter d, is assumed to respond as a linear elastic beam with Young’s modulus Ep, area
and mass moment of inertial Ap and Ip, and material density ρp, and will be modelled
with Euler-Bernoulli beam finite elements. The mass moments of inertia with respect
to both principal axes of inertia of the pile section have been assumed to be identical.
Zero material damping is considered for the pile. The non-degraded soil around the
foundation is assumed to respond as a horizontally layered isotropic homogeneous vis-
coelastic medium with Young’s modulus Esi and density ρsi, and will be modelled with
boundary elements. The material damping of the soil medium is considered by assuming
frequency-independent hysteretic damping through complex valued soil modulus of the
type Esi = Re[Esi ](1 + iξsi), where ξsi is the damping coefficient in layer i.
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Figure 2.3: Linear equivalent modelling of an imperfect pile-soil interface through dis-
tributed springs and dashpots.

2.3 Description of the proposed model

Most models of this kind assume perfectly bonded contact conditions between pile and
soil, which would imply imposing compatibility conditions between pile and soil displace-
ments. The model proposed herein for the computation of the dynamic response of piles,
on the contrary, seeks to take into account, through an equivalent linear approach, the
influence of a damaged pile-soil interface representing soil degradation around the pile,
together with possible contact effects such as lack of bond. This imperfect pile-soil inter-
face can be visualized as a degraded soil domain surrounding the piles whose mechanical
properties differ from those of the undisturbed soil beyond. Besides, damage at the pile-
soil interface will usually be a function of depth, as the largest displacements will usually
be experienced near the pile head, coinciding with the lowest soil confinement pressures.
For this reason, the diameter ddz(x3) and shear modulus Gdz(x3) of such degraded do-
main are assumed to be also a function of depth. The size of this domain in relation to
the pile diameter will be denoted by the dimensionless parameter χ(x3) = ddz(x3)/d.

As depicted in Figure 2.3, such damaged pile-soil interface is modelled by relating
displacements along FEM piles and within BEM soil through distributed springs and
dashpots whose properties vary along the pile and that represent the varying stiffness and
energy dissipation properties of the pile-soil interface with different levels of degradation
at different depths.

The next subsections describe the discretization scheme adopted for pile and soil load-
line and, afterwards, the boundary element equations and the beam finite element equa-
tions used to describe the dynamic response of non-degraded soil and pile, respectively.
The following subsection introduces the equations used to model the imperfect pile-soil
interface described above and couple both formulations through distributed springs and
dashpots that relate pile and soil displacements and whose properties can change along
the pile length. Finally, all involved equations are assembled into a global system matrix
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of equations.

2.3.1 Pile and soil load-line discretization

Piles are discretized using three-nodded Euler-Bernoulli beam finite elements with axial
deformation, with thirteen degrees of freedom defined in each element: one vertical and
two lateral displacements at each node, and two rotations at each one of the extreme
nodes, one around each lateral axis of the pile (i.e., torsion excluded). Figure 2.4 depicts
the element, axes and the symbols used to refer to each one of the variables involved.
ξ is the elemental dimensionless coordinate varying from ξ = −1 to ξ = 1. The lateral
displacements up

1 and up
2 along the pile element are approximated by a set of fourth

degree shape functions, while vertical displacements up
3 are approximated by the three

Lagrangian polynomials of second order, so that one can write

up
i (ξ) =ϕ1u

p
ki
+ ϕ2θ

p
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mi

+ ϕ5θ
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mi
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and

φ1(ξ) =
1

2
ξ(ξ − 1) (2.3a)

φ2(ξ) =1− ξ2 (2.3b)

φ3(ξ) =
1

2
ξ(ξ + 1) (2.3c)

This last set of functions is also used to interpolate within each element the pile-soil
contact interaction forces qp acting over the pile as

qpi (ξ) = φ1q
p
ki
+ φ2q

p
li
+ φ3q

p
mi

; i = 1, 2, 3 (2.4)

Similarly, the displacements along the load-lines within the soil are interpolated, also
within the element defined before, through an equivalent scheme

usint
i = φ1u

sint
ki

+ φ2u
sint
li

+ φ3u
sint
mi

; i = 1, 2, 3 (2.5)

where usint
(·)i

are the unknown displacements at internal soil BEM points coinciding with

the beam finite element nodes (see Figure 2.4).
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Figure 2.4: Discretization of pile and soil load-lines.

2.3.2 Boundary element equations

As mentioned before, each stratum of the layered non-degraded soil domain is modelled
by BEM. The boundary integral equation for a time-harmonic elastodynamic state de-
fined in a domain Ωm with boundary Γm can be written in a condensed and general form
as

cιuι +

∫

Γm

p∗u dΓ =

∫

Γm

u∗pdΓ +

∫

Ωm

u∗X dΓ (2.6)

where cι is the local free term matrix at collocation point xι, X are the body forces in the
domain Ωm, u and p are the displacement and traction over the boundaries, and u∗ and
p∗ are the elastodynamic fundamental solution tensors corresponding to the complete
space (Cruse and Rizzo [105]).

From the point of view of this formulation for the dynamic behaviour of the soil
medium, it is assumed that the soil continuity is not altered by the presence of the piles
or by the degraded zone around them. In turn, the effects of the pile-soil interaction are
introduced through internal distributed forces located along a load-line within the soil
medium. This distributed forces, that will depend on the relationship mentioned above
between displacements along the pile and within the soil medium, are treated as body
forces, and being the sole body forces involved in the problem, Equation (2.6) can be
written as

cιuι +

∫

Γm

p∗u dΓ =

∫

Γm

u∗p dΓ +

∫

Γm
l

u∗qs dΓl (2.7)

where Γm
l is the soil load-line within the domain Ωm and qs are the pile-soil contact

interaction forces induced within the soil domain (see Figure 2.5a).
These tractions along the soil load-line will also be interpolated in terms of the nodal

pile-soil contact interaction forces qs defined at internal points coinciding with the nodes
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Figure 2.5: Equilibrium conditions between pile and soil load-line.

Figure 2.6: Example of mesh typology used in the model (only a quarter of the geometry
is shown).

of the beam pile finite elements defined before as

qsi (ξ) = φ1q
s
ki
+ φ2q

s
li
+ φ3q

s
mi

; i = 1, 2, 3 (2.8)

As shown in Figure 2.6, the boundaries Γm are discretized into quadratic elements
of triangular and quadrilateral shapes with six and nine nodes, respectively. Once all
boundaries have been discretized, for each region Ωm, Equation (2.7) can be written in
all nodes on Γm in order to obtain a matrix equation of the type

Hssus −Gslqs = Gssps (2.9)

where us and ps are, respectively, the vectors of nodal displacements and tractions on the
boundary elements, Hss andGss are coefficient matrices obtained by integration over the
boundary elements of the fundamental solution times the corresponding shape functions,
and Gsl is the coefficient matrix obtained by numerical integration over the soil load-line
of the fundamental solution times the interpolation functions shown in Equation (2.3),
when the unit load is applied on Γm.

Furthermore, Equation (2.7) must be also applied on the internal nodes of the soil
load-line leading to
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Hlsus −Gllqs +Cusint = Glsps (2.10)

where Hls and Gls are coefficient matrices obtained by numerical integration over the
boundary elements of the fundamental solution times the corresponding shape functions,
Gll is the coefficient matrix obtained by numerical integration over the soil load-line of
the fundamental solution times the interpolation functions shown in Equation (2.3) when
the unit load is applied on the soil load-line, and usint is the vector of nodal displacements
along the soil load-line, which is multiplied by the diagonal matrix C, whose non-zero
terms are valued 1/2 in positions corresponding to pile nodes placed on a smooth surface,
as e.g. pile heads, and unity at the internal points.

2.3.3 Finite element equations

The time-harmonic dynamic response of the piles, discretized using the linear elastic
beam finite elements described in Section 2.3.1, can be described, in the finite element
sense, by the matrix equation

(Kp − ω2Mp)up − (Ks − ω2Ms)usint = Ftop +Qqp (2.11)

where Mp and Kp are the global mass and stiffness global matrices of the pile, up is the
vector of nodal displacements along the pile, Ftop are the forces at the top of the pile, Q
is the global matrix that transforms tractions along the pile to equivalent nodal forces
and moments, and ω is the circular frequency of the excitation.

In the case of models where welded contact conditions between pile and soil are
assumed, the equation of motion presented in Equation (2.11) does normally not include
the second term in brackets multiplied by the vector of nodal displacements along the
soil load-line usint, where Ms and Ks are the global mass and stiffness matrices of the
soil column occupied by the pile shaft. The soil continuity, from the point of view of the
BEM model for the soil, is not altered by the presence of the pile. This fact entails that
the model would initially overestimate the inertia and stiffness of the pile by taking also
into account those of the mentioned soil column. This effect is well known and, given
that the inertial effect is very significant, and much more important than the effect of
the additional stiffness, it has usually been corrected by subtracting the material soil
density from the pile density (see for instance [2, 18, 19, 23]).

On the other hand, displacements along pile and soil load-line are, in the present
model, related but not rigidly linked, which prevents from following the simpler strategy
mentioned in the previous paragraph and forces to subtract those additional inertia and
stiffness proportionally to the displacements of the soil, and not to the displacements of
the pile.

These two aspects justify the introduction of the −(Ks − ω2Ms)usint term, where
the mass and stiffness matrices of the soil column have been computed assuming the
shear beam model. Section 3.6 presents an example where the influence of each term is
illustrated.

Taking into account the discretization described above, and the corresponding shape
functions, the element stiffness sub-matrices corresponding to the lateral and axial be-
haviour (denoted by l and a, respectively) of the pile can be obtained by using the
principle of virtual displacements (see e.g. [106]):
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kpl
ij =

∫
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and
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∫

Le
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where primes denote derivative with respect to x3. These expressions yield the following
sub-matrices
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and

Kpa =
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Similarly, the element stiffness sub-matrices corresponding to the lateral and axial
behaviour of the soil column are obtained as

ksl
ij =

∫
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and
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leading to the following sub-matrices
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and

Ksa =
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(2.19)

Concerning the mass influence coefficients for a pile element, that represents the
inertia force opposing the acceleration experimented by a certain degree of freedom, can
be evaluated by a similar procedure as

mpl
ij =

∫

Le

ϕi ·m
p · ϕj dx3 ; i, j = 1, 2, 3, 4, 5 (2.20)

and

mpa
ij =

∫

Le

φi ·m
p · φj dx3 ; i, j = 1, 2, 3 (2.21)

Thus, considering a beam with uniformly distributed mass mp = ρpπd/4, the consis-
tent mass matrices obtained for the lateral and axial behaviours are, respectively

Mpl = mpLe
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and

Mpa =
mpLe
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(2.23)

Similarly, mass element sub-matrices coefficients of the soil column can be obtained
as

msl
ij =

∫

Le

ϕi ·m
s · φj dx3 ; i = 1, 2, 3, 4, 5 ; j = 1, 2, 3 (2.24)
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and

msa
ij =

∫

Le

φi ·m
s · φj dx3 ; i, j = 1, 2, 3 (2.25)

yielding

Msl = msLe
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and

Msa =
msLe
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(2.27)

where ms = ρsπd/4 is the distributed mass of the soil column.
Again, using the principle of the virtual displacements, the coefficients of matrix Q

for lateral forces can be obtained as

qlij =

∫

Le

ϕiφj dx3 ; i = 1, 2, 3, 4, 5 ; j = 1, 2, 3 (2.28)

and the ones for axial forces as

qaij =

∫

Le

φiφj dx3 ; i, j = 1, 2, 3 (2.29)

from which the following matrices for lateral and axial equivalent nodal forces, respec-
tively, can be derived

Ql = Le
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Qa =
Le
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(2.31)

2.3.4 Model of the soil-pile interface

The relative displacements between pile and soil load-line up−usint are related to the pile-
soil contact interaction distributed forces (see Figure 2.5). Therefore, for an infinitesimal
section at a certain depth x3, one can write:

kl (u
p
i − usint

i ) =qpi ; i = 1, 2 (2.32a)

ka (u
p
3 − usint

3 ) =qp3 (2.32b)

where kl = kl(χ,Gdz/Gs) and ka = ka(χ,Gdz/Gs) are the lateral and axial distributed
impedances, respectively, that represent the stiffness and damping properties of the
degraded pile-soil interface. In both cases, material damping is introduced assuming a
frequency-independent hysteretic damping model through complex valued coefficients of
the form k(·) = Re[k(·)](1 + 2iξdz), where ξdz is the soil-pile contact damping coefficient.
These distributed impedances can be written as

kl(χ,Gdz/Gs) = Fl(χ,Gdz/Gs) · Es (2.33a)

ka(χ,Gdz/Gs) = Fa(χ,Gdz/Gs) ·Gs (2.33b)

where Fl(χ,Gdz/Gs) and Fa(χ,Gdz/Gs) are proportionality functions that determine the
strength of the bond between the pile and the soil. Taking into account that both the
diamater and the shear modulus of the degraded zone will, in general, be functions of
depth (χ = χ(x3) and Gdz = Gdz(x3)), the distributed impedances and the proporcional-
ity functions will, in turn, be also x3-dependent. Possible distributions of these Fl(x3)
and Fa(x3) functions are shown in Figure 2.7. Usually, deficient contact effects will be
concentrated close to the ground surface, which is represented by lower values of the
proportionality functions in that region than in deeper zones. Later, different values of
Fl and Fa will be proposed depending on the level of degradation in the damaged pile-
soil interface. It is worth noting here that Equation (2.33) is similar to the one provided
by Guin and Banerjee [22]. In that case, however, the proportionality functions appear
divided by the pile diameter d, leading to pile diameter dependent functions.

Taking into account the discretization proposed in Section 2.3.1 for the displacements
along pile and soil load-line (Equations (2.1) and (2.5)) and the corresponding sets
of shape functions (Equations (2.2) and (2.3)), element stiffness sub-matrices can be
computed by premultiplying Equation (2.32) by the shape functions in Equation (2.3)
and integrating along each element. Those element stiffness sub-matrices are labelled as
Kpl

dz, K
pa
dz, K

sl
dz andKsa

dz, where the indices l and a stand for lateral and axial, respectively,
and p and s refer to pile and soil load-line. Then, the entries of the element stiffness
sub-matrices can be computed as
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Figure 2.7: Possible distributions of the Fl and Fa proportionality functions.

kpl
dzij

=

∫

Le

φi · kl(x3) · ϕj dx3 ; i = 1, 2, 3 ; j = 1, 2, 3, 4, 5 (2.34)

ksl
dzij

=

∫

Le

φi · kl(x3) · φj dx3 ; i, j = 1, 2, 3 (2.35)

kpa
dzij

= ksa
dzij

=

∫

Le

φi · ka(x3) · φj dx3 ; i, j = 1, 2, 3 (2.36)

For reference, if Fl and Fa are assumed to be constant over the element length, and
hence independent of x3, the degraded zone element stiffness sub-matrices for the lateral
and axial behaviour can be written as

Kpl
dz =

LeKl
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Ksl
dz =

LeKl
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Kpa
dz = Ksa

dz =
LeKa
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 (2.39)
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However, as Fl(x3) and Fa(x3) will usually vary with depth, these matrices will, in
general, be evaluated numerically or semi-analytically for each specific case. For example,
if a second order approximation of the Fl and Fa values over the element length can be
adopted, i.e. Fl = alξ

2 + blξ + cl and Fa = aaξ
2 + baξ + ca, being al, aa, bl, ba, cl and ca

constant values resulting from the approximation, the degraded zone element stiffness
sub-matrices for the lateral and axial behaviour can be written as

Kpl
dz =

LeKl

1260
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(2.40)

Ksl
dz =

LeKl

210
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(2.41)

Kpa
dz = Ksa

dz =
LeKa

210













28ca − 21ba + 18aa 14ca − 14ba + 6aa −7ca − 3aa

14ca − 14ba + 6aa 112ca + 16aa 14ca + 14ba + 6aa

−7ca − 3aa 14ca + 14ba + 6aa 28ca + 21ba + 18aa













(2.42)

Here, as Fl = Fl

(

χ(x3),
Gdz(x3)

Gs

)

and Fa = Fa

(

χ(x3),
Gdz(x3)

Gs

)

, the order of Fl

and Fa will depend on the chosen x3-dependent expressions for the χ = χ(x3) and
Gdz = Gdz(x3) representations.

Similarly, the entries of the element sub-matrices Ql
dz and Qa

dz that transforms trac-
tions along the soil load-line to equivalent nodal forces, are computed as

qldzij = qadzij =

∫

Le

φiφj dx3 ; i, j = 1, 2, 3 (2.43)

leading to the following terms

Ql
dz = Qa

dz =
Le
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Finally, after the assembly of the global matrices, Equation (2.32) can be expressed
in matrix form as

Kp
dzu

p −Ks
dzu

sint = Qdzq
p (2.45)

where Kp
dz and Ks

dz are the resulting global stiffness complex matrices for the degraded
zone.

2.3.5 Assembly of the global system matrix of equations

Grouping Equations (2.9), (2.10), (2.11) and (2.45), assuming compatibility conditions
between strata interfaces and equilibrium along the pile-soil interface (qs = −qp), and
considering that acting forces at the top of the pile (Ftop) are known together with
the tractions at the free surface (usually ps = 0), the dynamic behaviour of the soil-
pile foundation system with a degraded soil zone surrounding the pile is defined by the
following system matrix of equations:









Hss −Gsl 0 0
Hls −Gll 0 C
0 Q (Kp − ω2Mp) −(Ks − ω2Ms)
0 −Qdz −Kp

dz Ks
dz

















us

qs

up

usint









=









Gssps

Glsps

Ftop

0









(2.46)

Equation (2.46) coincides with that provided by Padrón et al. [23] when kl, ka → ∞,
situation in which usint = up.
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Chapter 3

Model calibration and results

3.1 Introduction

The object of this chapter is twofold: (i) to verify that the proposed simplified coupled
BEM-FEM model can really be used to study the problem initially described of lateral vi-
bration of a pile with degraded pile-soil interface, and (ii) to calibrate the proportionality
function Fl(χ,Gdz/Gs) for such a problem.

To do so, results obtained with the BEM-FEM model proposed herein are going to
be compared against the ones obtained from a more rigorous three-dimensional multi-
domain BEM approach for three different configurations.

The first configuration is characterized by a degraded zone with constant diameter,
extending along the whole pile and with ξdz = 0, and will serve the purpose of obtaining
an expression for function Fl(χ,Gdz/Gs). The second configuration will incorporate
material damping in the degraded zone as a funcion of damage, and will be useful to
calibrate the damping parameter of the pile-soil interface in the simplified model. Finally,
the third configuration will be less simplified, with an inverted truncated conical damaged
zone only along the upper part of the pile, and will show that the proposed model and
proportionality function is adequate to reproduce also more complex configurations such
as this one.

3.2 Multi-domain BEM reference model

The multi-domain BEM model taken as reference for verification and calibration of
the coupled BEM-FEM model developed here, is the one developed and implemented
by Maeso et al. [17]. Through this model, a rigorous continuum mechanics solution
of the problem is obtained. A linear system of e equations derives from the singular
boundary integral equation for elastodynamics [107]. This way, the unknown boundary
displacements and tractions are obtained.

Each of the domains that constitute the soil-foundation system, i.e. pile, half-space
and degraded zone, are governed by the integral equation

cιuι +

∫

Γm

p∗u dΓ =

∫

Γm

u∗p dΓ (3.1)

corresponding to a continuum, finite or semi-infinite, isotropic, homogeneous, linear,
viscoelastic medium. All boundaries are discretized into quadratic elements of triangular
and quadrilateral shapes with six and nine nodes, respectively. Then, for each region Ωm,



Non-degraded 

half-space

Degraded zone

Figure 3.1: First configuration analysed, with a degraded zone of constant diameter
along the whole length of the pile.

Equation (3.1) can be written in all nodes on Γm in order to obtain a matrix equation
of the type

Hssus = Gssps (3.2)

The application of boundary conditions, in terms of tractions or displacements, and
compatibility between the different interfaces of the three domains, allows to write the
final matrix system of equation that represents the dynamic response of the problem.
Hence, three domains are build and meshed for each configuration: one corresponding
to the soil half-space (Gs, νs, ρs and ξs), one corresponding to the pile (Ep, νp and ρp),
and the degraded zone domain (Gdz, νdz, ρdz and ξdz).

3.3 Calibration of proportionality function Fl

Figure 3.1 illustrates the first configuration of the study, characterized by a degraded
zone of constant diameter and extending along the whole length of the pile, which is
embedded in a homogeneous half-space. Three different values are adopted for the ratio
between the diameters of degraded zone and pile: χ = ddz/d = 1.2, 1.4 and 1.6. Another
five values are considered for the ratio between the shear modulus of degraded zone and
half-space, representing different levels of degradation: Gdz/Gs = 1.00, 0.75, 0.50, 0.25
and 0.10.

Two soil types are assumed, stiff and soft, with Young’s modulus ratios of Ep/Es =
100 and Ep/Es = 1000, respectively, being Ep the pile Young’s modulus. In both soil
cases, ξs = 0.01, νs = 0.4, being νs the soil Poisson’s ratio, and the ratio between
densities is ρs/ρp = 0.7. The pile aspect ratio is L/d = 15. In this calibration procedure
no damping in the degraded zone domain is assumed, but as it is considered to be
a crucial aspect, mainly in highly degraded soils, its incorporation to the BEM-FEM
formulation is verified below.
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Results are presented in terms of horizontal impedance functions normalized by pile
diameter and soil Young’s modulus. Those impedances are frequency dependent complex
functions representing the horizontal resistant force of the foundation when the pile tip
is horizontally and harmonically displaced a unit length. In the current formulation:
Khh = khh + ia0chh, in which khh represents the horizontal foundation stiffness and
chh the horizontal foundation damping, being a0 the dimensionless frequency defined as
a0 = ωd/cs, where cs is the soil shear wave velocity of the undisturbed half-space.

Figures 3.2a and 3.2b show an example of the kind of meshes generated for the
reference multi-domain BEM analyses, being (a) and (b) the complete and a pile top
zoom view of the multi-domain BEM mesh for the particular degraded zone diameter
ratio of χ = ddz/d = 1.4. Figure 3.2c shows a pile top zoom view of the mesh used
by the BEM-FEM simulations. It only includes the free surface boundary elements
and the pile finite beam elements. It is important to notice the high reduction not
only in the mesh complexity, but also in the quantity of elements and nodes, leading to
considerable computing time reductions. Having the same free surface discretization, the
multi-domain BEM mesh for the specific case mentioned above is composed by 10730
nodes and 4183 elements, while the BEM-FEM mesh includes only 3866 nodes and 960
elements, which represents a reduction of 61% in the number of nodes and of 77% in the
number of elements.

The impedance functions obtained from the reference multi-domain BEM model for
the different cases specified above are shown in continuous lines in Figures 3.3 and 3.4
for soft and stiff soils, respectively. The calibration of the values of the proportionality
function Fl for each of the configurations was achieved by performing a sweep of simula-
tions with the simplified BEM-FEM model and finding the values of Fl that minimize the
difference between the impedance functions provided by both models. The resulting val-
ues of Fl, offering the better matching to the multi-domain BEM simulation results, are
summarized in Table 3.1, and their associated horizontal impedance functions are shown
in Figures 3.3 and 3.4 for soft and stiff soils, respectively. A very good agreement is found
between the impedance functions provided by both models. The dynamic behaviour of
the system is reproduced adequately in all the frequency range with a constant value
of Fl through all the pile depth. As expected, the stiffness and damping of the soil-pile
foundation system tend to decrease when the Gdz/Gs ratio decreases and also when the
size of the degraded zone increases. Another relevant aspect is the independence of the
Fl parameter on the Young’s modulus of the pile Ep, the Young’s modulus of the soil
Es, and hence, the Young’s modulus ratio of the soil-pile foundation system Ep/Es. A
perfectly bonded behaviour of the pile-soil interface is obtained for Fl = 25, used when
the soil around the pile is not degraded Gdz/Gs = 1. The function Fl is also presented
in Figure 3.5 to show qualitatively how it changes with χ and Gdz/Gs.

The data presented in Table 3.1 has been fitted, by the least-squares technique, to
the following polynomial function that can be used for interpolation:

Fl =6.114− 8.560χ+ 258.7
Gdz

Gs

+ 3.013χ2 − 298.8χ
Gdz

Gs

− 223.3

(

Gdz

Gs

)2

+

+ 90.29χ2Gdz

Gs

+ 286.0χ

(

Gdz

Gs

)2

− 11.23

(

Gdz

Gs

)3

− 95.40χ2

(

Gdz

Gs

)2

+

+ 27.25χ

(

Gdz

Gs

)3

− 9.345

(

Gdz

Gs

)4

(3.3)
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Figure 3.2: Complete (a) and top zoom view (b) of a multi-domain BEM mesh for the
particular degraded zone diameter ratio of χ = ddz/d = 1.4, and BEM-FEM mesh detail
(c) with 1D elements for the piles. (Only a quarter of the geometry is meshed).
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Figure 3.3: Comparison between stiffness and damping function obtained from the pro-
posed BEM-FEM model and the reference multi-domain BEM model for the case de-
picted in Figure 3.1. ξdz = 0, Ep/Es = 1000.
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Figure 3.4: Comparison between stiffness and damping function obtained from the pro-
posed BEM-FEM model and the reference multi-domain BEM model for the case de-
picted in Figure 3.1. ξdz = 0, Ep/Es = 100.

This expression, whose range of application is for χ ∈ [1.2, 1.6] and Gdz/Gs ∈
[0.10, 1.00], is plotted in Figure 3.6, where it is shown that it is a smooth surface that
contains all the original data present in Table 3.1 (shown in red points).

3.4 Modelling of material damping in the degraded

domain

In the previous section, no material damping was initially considered for the degraded
zone. However, and as already mentioned in the introduction, the value of the damping
ratio increases significantly with the shear strain and the damage in the soil, and must
therefore be adequately incorporated into the model. For highly degraded soils, damping
ratios can exceed 20%, which can induce significant variations in the dynamic behaviour
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Gdz/Gs

1.00 0.75 0.50 0.25 0.10
1.2 25.0 19.0 13.0 7.0 3.0

χ 1.4 25.0 16.0 9.0 4.0 1.8
1.6 25.0 14.0 7.0 3.0 1.2

Table 3.1: Proposed values of the proportionality function Fl.
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Figure 3.5: Plot of the proposed proportionality function Fl for the specific values of χ
and Gdz/Gs studied. Point values shown in Table 3.1.

Figure 3.6: Plot of Equation (3.3) for the interpolation of the proportionality function
Fl. Point values shown in Table 3.1.

32



Chapter 3. Model calibration and results

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  0.2  0.4  0.6  0.8  1

ξ d
z

G
dz

 / Gs

Ip = 0.0

Ip = 5.0

Ip = 10.0

Ip = 20.0

Ip = 40.0

Ip = 60.0

Figure 3.7: Plot of Equation (3.4) for different values of the soil plasticity index Ip.

Gdz/Gs 1.00 0.75 0.50 0.25 0.10
ξdz 0.010 0.043 0.096 0.166 0.218

Table 3.2: Damping ratios of the degraded zone based on the expression proposed by
Ishibashi and Zang [103] for different levels of degradation.

of the soil-foundations systems, taking into account that the degraded zone surrounds
the vibrating pile.

The expression proposed by Ishibashi and Zang [103] for the degraded soil damping
ratios ξdz, based on experimental tests, is adopted in this section, although other options
could also be used. Such expression depends on the plasticity index of the soil Ip and the
ratio between the equivalent shear soil modulus and the maximum shear soil modulus
Gdz/Gmax:

ξdz =
0.333

(

1 + e−0.0145I1.3p

)

2

[

0.586

(

Gdz

Gmax

)2

− 1.547

(

Gdz

Gmax

)

+ 1

]

(3.4)

and is shown in Figure 3.7.

Assuming a medium plasticity index (Ip = 18.0) and considering that the maximum
shear modulus of the soil is the one of the undisturbed half-space domain (Gmax = Gs),
the damping ratios shown in Table 3.2 are obtained for the different soil degradation
levels adopted herein.

Adopting these damping ratios in the definition of the degraded zones for both in the
multi-domain BEM and in the proposed BEM-FEM model, the horizontal impedance
functions shown in Figure 3.8 for soft soil and in Figure 3.9 for stiff soil are obtained.
The damping coefficients of the impedance functions strongly change if compared with
the ones with ξdz = 0 (Figures 3.3 and 3.4 vs. Figures 3.8 and 3.9, respectively). Stiff-
ness functions also vary slightly with the inclusion of the degraded zone damping. The
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Figure 3.8: Comparison between stiffness and damping function obtained from the pro-
posed BEM-FEM model and the reference multi-domain BEM model for the case de-
picted in Figure 3.1. ξdz 6= 0, Ep/Es = 1000.

good agreement with the results provided by the reference model is maintained. It is
demonstrated that the material damping in the degraded domain is perfectly captured
by the simpler BEM-FEM model.

3.5 Verification for a degraded domain with shape

changing along pile depth

The utility of the developed tool lies mainly in the possibility of considering a degraded
zone whose properties and geometry vary with depth. Usually, the maximum stresses
and maximum strains within the soil are located in the surroundings of the piles and
close to the surface. Therefore, soil degradation will generally be concentrated in the
upper parts of the foundation, and will not be regularly distributed along the pile, as in
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Figure 3.9: Comparison between stiffness and damping function obtained from the pro-
posed BEM-FEM model and the reference multi-domain BEM model for the case de-
picted in Figure 3.1. ξdz 6= 0, Ep/Es = 100.

the first example studied above. Thus, the aim of this section is checking whether the
proportionality function proposed in the previous section can also be applied to more
general configurations.

To do this, the configuration represented in Figure 3.10, with an inverted truncated
conical degraded zone with χ(0) = 1.5 or 1.6, χ(−hdz) = 1.2, and hdz/d = 3.0 and
6.0, is considered in this section, being hdz the depth of the degraded zone. Results
are presented in terms of impedance functions for Gdz/Gs = 1.00, 0.75, 0.50, 0.25 and
0.10, as in the previous section. The configurations are studied with both models. In
the case of the proposed BEM-FEM formulation, the proportionality functions found in
the previous section are implemented, and the degraded zone damping ratio is obtained
from Equation (3.4). On the other hand, Figure 3.11 shows one of the meshes built for
the analyses carried out with the reference multi-domaim BEM code.
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Non-degraded 

half-space

Degraded zone

Figure 3.10: Second configuration analysed, with an inverted truncated conical degraded
zone.

Figure 3.11: Detail of one of the meshes generated for the multi-domain BEM analyses
with the inverted conical degraded zone (only a quarter of the geometry is shown).

3.5.1 Verification in terms of impedance functions

Impedance functions corresponding to Ep/Es = 1000, and χ(0) = 1.6 and 1.5 are
presented in Figures 3.12 and 3.13, respectively, for different depths of the degraded
zone domain (hdz/d = 3.0, 4.5 and 6.0). Also, impedance functions corresponding to
Ep/Es = 100, and χ(0) = 1.6 and 1.5 are presented in Figures 3.14 and 3.15, respec-
tively, for hdz/d = 3.0, 4.5 and 6.0. It is shown that the proposed model is able to
reproduce, with high accuracy, both the stiffness and damping functions provided by
the reference multi-domain BEM code, which also means that expression proposed in
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Figure 3.12: Comparison between stiffness and damping function obtained from the
proposed BEM-FEM model and the reference multi-domain BEM model for the case
depicted in Figure 3.10 with an inverted truncated conical degraded zone. ξdz 6= 0,
χ(0) = 1.6 and Ep/Es = 1000.

Equation (3.3) for the proportionality function Fl can be applied to configurations such
as the one studied here.

3.5.2 Verification in terms of displacements

Apart from these impedance functions, related to the horizontal displacements at pile
head, it is also interesting to explore whether the simplified proposed model is also able
to reproduce adequately the response of the pile along its length. To this end, Figure 3.16
presents the distributions of lateral displacements along the pile provided by the proposed
BEM-FEM model and the reference multi-domain BEM model for the configuration with
Ep/Es = 1000, χ(0) = 1.6 and hdz/d = 6.0. The results are presented for the five relative
shear moduli considered for the degraded soil (Gdz/Gs = 1.00, 0.75, 0.50, 0.25 and 0.10)
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Figure 3.13: Comparison between stiffness and damping function obtained from the
proposed BEM-FEM model and the reference multi-domain BEM model for the case
depicted in Figure 3.10 with an inverted truncated conical degraded zone. ξdz 6= 0,
χ(0) = 1.5 and Ep/Es = 1000.

and for three different dimensionless frequencies: a0 = 0.0, 0.5 and 1.0. The figure
also displays the displacements obtained for the soil load-line in the coupled BEM-FEM
model and the displacements obtained along the interface between degraded zone and
non-degraded half-space, in the case of the multi-domain BEM reference model. The
deformed shapes are normalized by the pile head displacement, and are plotted taking
into account the corresponding shape functions (Equations (2.2) or (2.3)).

It can be seen that the agreement between the pile deformed shape obtained from
the BEM-FEM model and the reference multi-domain BEM model is very high. It can
also be seen that the deformation of the soil load-line follows very accurately that of the
degraded zone-half space interface, which means that the term up−usint is representative
of the deformation of the degraded zone.

As expected, the stiffer the degraded zone (from x3/d = 0 to x3/d = −hdz/d = −6,
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Figure 3.14: Comparison between stiffness and damping function obtained from the
proposed BEM-FEM model and the reference multi-domain BEM model for the case
depicted in Figure 3.10 with an inverted truncated conical degraded zone. ξdz 6= 0,
χ(0) = 1.6 and Ep/Es = 100.

in this case), the smaller is the separation between pile and soil load-line. Below x3/d =
−hdz/d, were the contact between pile and soil is no longer considered as damaged, the
deformed shapes of pile and soil load-line coincide.

3.6 Influence of the soil column stiffness and inertia

terms

As stated in Section 2.3.3, the soil continuity, from the point of view of the soil boundary
element equations, is not altered by the presence of the pile. Thus, in order not to be
considered twice, the stiffness and inertia of the soil column superimposed to the pile
volume needs to be removed from the system. Here, and being the displacements of pile
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Figure 3.15: Comparison between stiffness and damping function obtained from the
proposed BEM-FEM model and the reference multi-domain BEM model for the case
depicted in Figure 3.10 with an inverted truncated conical degraded zone. ξdz 6= 0,
χ(0) = 1.5 and Ep/Es = 100.

and soil load line not rigidly linked, this is done by subtracting the term (Ks−ω2Ms)usint

in the left hand side of Equation (2.11).
The aim of this section is illustrating the influence of these stiffness and inertia terms.

To do so, the dynamic response of the system presented in Section 3.3 is studied using
five variations on Equation (2.11):

• Neglecting both additional inertia and stiffness of the soil column:

(Kp − ω2Mp)up = Ftop +Qqp (3.5)

• Following the common approach in welded models and subtracting the soil density
from the pile density, but keeping the inertia term proportional to pile displace-
ments (see for instance [2, 18, 19, 23]):
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dz dz dz dz dz

Figure 3.16: Pile and soil load-line displacements for the case of an inverted truncated
conical zone with Ep/Es = 1000, χ(0) = 1.6 and hdz/d = 6.0 and for different degraded
zone degradation levels. Comparison between BEM-FEM and reference multi-domain
BEM models.
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(

Kp − ω2Mpρp − ρs
ρp

)

up = Ftop +Qqp (3.6)

• In parallel to the previous case, subtracting the soil column mass but keeping the
inertia term proportional to the soil load-line displacements instead to the pile
displacements:

(Kp − ω2Mp)up + ω2Msusint = Ftop +Qqp (3.7)

• Subtracting the soil column stiffness from the pile stiffness, but neglecting the
inertia term of the soil column:

(Kp − ω2Mp)up −Ksusint = Ftop +Qqp (3.8)

• Finally, subtracting the soil column stiffness and inertia terms, keeping both terms
proportional to the soil load-line displacements (these are the final implemented
FEM equations in the current model, see Section 2.3.3):

(Kp − ω2Mp)up − (Ks − ω2Ms)usint = Ftop +Qqp (3.9)

Comparison results between the previous stated five variations for the FEM equations
are presented in Figure 3.17 in terms of normalized absolute value of the impedance
function. Impedances are show for both soil-pile stiffness ratios (Ep/Es = 1000 and
100) and two limiting cases: a) welded soil-pile interface (Fl → ∞) and b) a pile that
is completely loose from the soil (Fl → 0) and, therefore, behaves as a free cantilever
beam; also an intermediate case is presented (Fl = 2.0).

When a perfectly bonded soil-pile interface is considered (Fl(x3) → ∞), the displace-
ment fields of the pile and the soil load-line coincides, no matter if the soil column inertia
term is linked to the pile or to the soil load-line, and hence the case corresponding to
the blue line condense to the case represented by the green line. If this is the case, it
is perfectly valid the traditional assumption [2, 18, 19, 23] of subtracting the soil density
from the pile density, but keeping the inertia term proportional to pile displacements.
As higher is the excitation frequency, higher is the impedance when the soil column mass
is removed, i.e. passing from black line to green or light blue lines.

On the other hand, if the soil column stiffness is subtracted to the pile stiffness, dark
blue line vs. black line or red line vs. light blue line, a reduction in the impedance
function values are only noticeable in the stiff soil case (a reduction of 1.7% for the soft
soil case (Ep/Es = 1000) and a reduction of 3.0% in the stiff soil case (Ep/Es = 100) are
obtained).

Bringing the model to the limit when Fl(x3) → 0, i.e. when the soil-pile interface is
completely degraded, it makes the soil column displacements field and the tractions along
the soil-pile interface to vanish, usint → 0 and qp → 0. If the traditional assumption of
subtracting the soil density to the pile density is assumed also in the current model, i.e.
the green line case, the pile oscillates as a cantilever beam with its not realistic natural
frequencies. This is the reason why the soil column mass and stiffness is decoupled from
the pile displacements field and linked to the soil load-line displacements field. All the
remaining cases, represented by red, light blue and dark blue lines, condense to the case
represented by the black line due to usint → 0, being all lines superimposed. It makes
the pile to oscillates at its actual natural frequencies.

42



Chapter 3. Model calibration and results

Figure 3.17: Influence of the consideration of the soil column inertia and stiffness in the
FEM equations. Absolute value of the horizontal impedance function of a single pile
foundation for different representative values of the Fl proportionality function.

3.7 Conclusions

An equivalent linear model for estimating the dynamic horizontal response of piles con-
sidering soil degradation along the soil-pile interface has been presented, implemented
and calibrated. Taking as a starting point a previous boundary element-finite element
coupled model proposed by Padrón et al. [23], the formulation proposed herein incor-
porates the possibility of modelling an imperfect or damaged soil-pile interface along
which bounded contact conditions no longer apply. The proportionality functions used
to define the distributed springs and dashpots that relate pile and soil displacements
have been calibrated for a specific set of configurations by comparison against results
of a multi-domain three-dimensional boundary element code. The formulation proposed
herein has been shown to be able to reproduce the impedance functions and displace-
ments provided by the more rigorous and computationally costly reference multi-domain
BEM model. The proposed coupled BEM-FEM formulation is not only computationally
more efficient (it is 7.5 times faster than the multi-domain BEM for the single pile case
tackled here) but is also more versatile, and requires much less work in mesh generation,
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which will now allow to study more complex problems. Notice that the speed-up in
the computation and the savings in time for the mesh generation will increase as the
complexity of the system increases, e.g. simulation with group of piles and/or using pile
inclination. The efficiency of the model will also allow to perform parametric analyses
or be incorporated in processes that require a large number of evaluations, such as in
many optimization techniques.

The formulation can now be extended to model pile groups, as the boundary element
approach used to model the soil allows to take rigorously into account pile-soil-pile in-
teraction effects. It can also be generalized to raked piles. Also, the model can be used
to obtain results for substructuring analyses, or can incorporate the superstructure or
other elements for direct analyses of complete soil-foundation-superstructure systems.

The properties of the pile-soil interface can now be calibrated for different configu-
rations. Here, the comparison against empirical results for specific cases of interest will
play a crucial role. At the same time, the definition of those properties of distributed
stiffness and damping along the interface could also incorporate more complex models
of soil degradation depending for instance on shear strain levels, such as those cited in
the literature review (Section 1.3.1).
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Part II

Seismic response of bridge piers on
pile groups





Chapter 4

Problem definition, methodology
and modelling

4.1 Introduction

A multi-span roadway viaduct is a bridge typology that saves a valley or a ravine in
its entirety. Viaducts carry the road traffic and the railway above, and usually connect
two points at approximately the same height (see Figure 4.1). The deck is supported
by equally spaced single piers. In many occasions, and depending on the soil properties,
groups of piles are used in the pier foundation. At the base of each pier, a pile cap is
embedded into the soil connecting all pile heads. The pile cap collects all the efforts of
the superstructure, coming from both the static and dynamic loads, and transmits them
to the heads of the piles. Then, those loads are properly passed on to the soil along the
piles length.

Figure 4.1: Viaduct of Rodén, Spain (courtesy of Miguel Ángel Tremps).



Figure 4.2: Soil – piles foundation – superstructure system and foundation layouts.

At first, masonry structural typology were used for viaducts. It is not until the early
years of the past century when the reinforced concrete technology was used for elevated
railways. Reinforce concrete is used in almost all the different structural members that
constitute the viaduct, i.e. deck, piers, pier caps, piles, pile caps, abutments, etc. (see
Figure 4.2). However, the continuous girders introduced beneath the deck, as the means
of supporting it, are usually manufactured from steel. Girder sections are typically made
from truss network that increases their resistance to load (see Figure 4.3).

In earthquake prone areas, and attending to the properties of the soil deposit, the
design of the pile foundation system is crucial. It is not only designed to withstand
superstructure static loads, also the loads induced by the earthquake must be taken into
account. In the event of an earthquake, the dynamic interaction between the super-
structure and the soil-foundation system play a significant role, and may lead to the
collapse of the viaduct or to important repair costs. Depending on the properties and
dimensions of all the structural members, and also depending on the features, properties
and stratigraphy of the soil, different layouts for the pile foundations are required. The
pile foundation must be properly designed in order to reduce the interaction between
the soil and the structure, or even to increase it if needed for some particular cases as
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Figure 4.3: Girders installation. Visit to the ongoing works in the road between Perugia
and Ancona, Italy.

will be shown. Also, piles modify the input motion to the structure, so using the proper
layout of the piles that compose the pile group foundation, the input energy induced by
the earthquake can be reduced to a great extent.

Part II of this document will focus on the transverse seismic response of multi-span
roadway viaducts characterised by identical pier heights and constant span lengths, with
the exception of the edge ones, which are reduced to the 80% to optimise distribution of
positive bending moments due to moving loads (Figure 4.4a). At dynamic conditions,
the deck is rigidly connected to all piers both in the longitudinal and transverse directions
(Figure 4.4b), through the use of shock transmitters that allow free elongations of the
deck due to thermal actions at static conditions (Figure 4.4c). Finally, the deck is
disconnected at the abutments in the longitudinal and transverse directions through the
use of multi sliding bearings, to avoid the development of dual load path mechanisms
resisting the seismic actions.

By assuming a synchronous seismic motion at all supports, above assumptions assure
that the deck transverse deflections due to the out-of-phase seismic transverse response
of piers are negligible [108] and the seismic response of the bridge can be studied through
a single degree of freedom system representative of a single pier with its tributary deck
mass. Thus, bridge decks are designed for vertical actions, including moving loads, while
piers are designed to withstand the seismic actions.

The seismic action is defined according to the EC8–1 [109], avoiding the need of a
specific site selection, and is represented by the elastic displacement response spectrum
Sd for the life safety limit state.

The seismic transverse behaviour of bridges is studied exploiting advantages deriving
from the deck restraints at dynamic conditions (see Figure 4.4b). Single bridge piers,
with the tributary deck masses, are considered and suitably modelled to account for both
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Figure 4.4: (a) Viaduct longitudinal view and restraint conditions of the deck under (b)
dynamic and (c) static loading.

the nonlinear mechanical behaviour and the SSI. The response of the soil-foundation-
pier system can be considered representative of the overall behaviour of inner piers of
the viaducts, slightly affected by boundary effects at the abutments. The pile cap and
the bent cap are assumed to be rigid, while the nonlinear elastic and damping properties
of the pier are modelled through a lumped rotational spring and dashpot at the base of
the pier.

Thus, SSI analyses are performed through the substructure approach both in the
frequency and time domains, and the compliance of the soil-foundation system is repre-
sented by its frequency-dependent impedance matrix. Also, the pier is subjected to the
FIM [110], namely the motion experienced by the foundation as a consequence of the
seismic waves propagating into the soil, and obtained through a kinematic interaction
analysis of the soil-foundation system.

4.2 Bridge piers seismic design procedure

Taking advantage of the decks restraints at dynamic conditions, which foresees all piers
of the viaducts subjected to similar inertia forces deriving from the relevant masses of
the deck and of the pier itself, a single inner pier of the bridge is considered in the design,
neglecting local boundary effects and assuming a Fixed Base (FB) scheme.

Non-ductile piers are designed to remain in the elastic range while ductile piers are
designed to develop dissipative plastic hinges at the base (see Figure 4.5a), charac-
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Figure 4.5: Fundamentals of the displacement-based seismic design of structures [111].
(a) Plastic hinges at the pier base. (b) Takeda’s hysteretic cyclic rule [112]. (c) Effective
stiffness and hysteretic area for equivalent damping calculation. (d) Design displacement
spectra.

terised by a suitable plastic rotation capacity. The displacement-based design approach
is adopted to design systems with established ductile performances, in terms of expected
piers displacement ductility demand µ (or expected plastic rotation of hinges at the
piers base) [111]. As well known, the displacement-based design approach is based on
the design of an equivalent single degree of freedom system for which the secant stiffness
and equivalent viscous damping properties (depending on the ductility developed by the
structural system) are defined, starting from the desired displacement (or ductility) that
the system should exhibit when subjected to the design seismic action (see Figure 4.5c).

The contribution to the pier transverse stiffness is essentially produced by the con-
crete, with the yield curvature φy essentially independent of reinforcement content
and axial load level. So, based on moment-curvature analyses reported in [111], φy

is a function of the yield strain of longitudinal reinforcement εy and section diame-
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ter D, φy = 2.25εy/D. Thus, the pier lateral displacement at yielding is evaluated as
∆y = φy(H+LSP )

2/3, being LSP the length of the strain penetration [113]. Then, start-
ing from the elastic displacement ∆y, the expected displacement demand ∆d is defined
to obtain the desired elastic or ductile behaviours, and hence, the target ductility de-
mand is defined as µ = ∆d/∆y (see Figure 4.5c). The reinforcement content, in terms of
number and dimensions of rebars, is what is calculated through this procedure in order
to withstand bending moments and shear forces at the most stressed section located at
the pier base.

Being the displacement-based design method a linear-equivalent design approach, an
equivalent viscous damping ratio ξeq needs to be defined to take into consideration the
energy dissipation by the pier yielding. Knowing that the Takeda’s hysteretic cyclic
rule [112] is characteristic of the reinforced concrete column structures, which accounts
for the stiffness degradation (see Figure 4.5b), and assuming a proportional to tangent
stiffness damping coefficient, whose related ratio in the elastic range is 5% for all cases
studied herein (ξel=0.05), the following expression has been adopted for the equivalent
damping ratio [111]:

ξeq = 0.05 + 0.444
µ− 1.0

µπ
(4.1)

Taking into account the displacement response spectrum Sd, suitably reduced on the
basis of the equivalent viscous damping ratio ξeq, the effective (i.e. inelastic) period of
the pier Teff is determined (see Figure 4.5d). With it, the secant stiffness Keff is defined,
and hence, the required bending moment at the pier base too, Mb = Keff∆dH . The
required bending moment must be overestimated as MSd = 1.044Mb to account for the
amplification of stress resultants due to the bi-directional seismic input. Determining the
longitudinal reinforcement content, the resistant bending moment of the final reinforced
concrete section MRd must be higher than the required bending moment MSd. The shear
resistance of the pier is ensured with the correct transverse reinforcement. The spacing
between stirrups is defined according to the required shear force VSd = γoMRd(H + hc),
where γo = 1.25 is the overstrength factor [113].

The adopted procedure comply with EC8–2 [113] requirements in terms of reinforce-
ment detailing, stability conditions and hierarchy principles.

4.3 Moment – curvature – chord rotation relation-

ships

For obtaining the nonlinear backbone curve that relates the pier bending moment with
the chord rotation ϕS of the lumped spring at the base where plastic hinges develop,
firstly the nonlinear relationship between moment and curvature of the pier cross-section
must be calculated. As previously stated in Section 4.2, cross section is composed by
confined concrete at the inner part, whose confinement grade depends on the longitudinal
rebars content and stirrups spacing, the steel of rebars and the concrete cover.

The moment-curvature constitutive relationship is obtained through the CUMBIA
software [114] adopting the Mander constitutive law for the confined and unconfined
concrete [115] and King law [116] for rebars (see Figure 4.6).

In details, the unconfined concrete constitutive law is evaluated following indications
of EC8-2 [113] assuming the strain at maximum strength εco and the maximum strain
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Figure 4.6: Mander constitutive law for the confined and unconfined concrete [115], and
the King law [116] for rebars.

εsp equal to 0.002 and 0.0067, respectively. As for the maximum cylindrical compressive
strength f ′

co, the mean expected value for the concrete grade C35/45 is used, correspond-
ing to 45.5MPa, according to [111]. Furthermore, an initial elastic modulus Ec equal
to 33.73GPa is assumed. Constitutive laws representative of the confined concrete of
piers are determined taking into account the relevant contributions provided by stir-
rups [115, 117]. Expected mean yielding stresses of longitudinal fyl and transverse fyt
reinforcements of grade B450C are assumed to be 495.0MPa and 450.0MPa, respec-
tively, according to indications provided in [111]; for both, considering the King’s model,
the strain hardening εsh and the ultimate strain εsm are assumed to be equal to 0.008
and 0.12, respectively (Figure 4.6). Finally, the mean maximum tensile strength fsu is
assumed equal to 668.0MPa while the Young’s modulus Es is assumed to be 210.0GPa.

Moment – chord rotation relationships are defined starting from moment – curvature
relationships (see Figure 4.7). The real curvature profile is the sum of the elastic and
the real plastic contributions. Standard considerations assume a simpler and equivalent
curvature profile of the plastic contribution than the real one. The plastic hinge modelling
is based on the integration of a constant plastic curvature profile for being able to predict
the flexural deformations of the pier [111,113,117,118]. At the same time, it accounts for
the stress penetration effects into the pile cap. The length of this constant distribution
of plastic curvatures Lp differ from the real length at the base of the pier where plastic
hinges develop L′

p. Finally, the equivalent curvature profile is constituted by the elastic
contribution and a equivalent and constant plastic contribution in a fixed length (Lp) at
the base of the pier, while above the plastic hinge, only elastic deformations are assumed
to occur.

At the top of the pier, the lateral displacement just before yielding ue is integrated
leading to Equation (4.2a), being φy the section curvature at yielding. As the equivalent
system of the pier is constituted by a rigid link with a lumped spring at the base, its
equivalent rotation at yielding ϕSy is given by Equation (4.2b). When the base of the pier
reaches the ultimate curvature φu, the lateral displacement at the top of the pier is the
summation of two contributions: the elastic lateral displacement before yielding ue, and
the plastic component up. The integration of the plastic curvature φu−φy is discontinuous
over the pier length, giving rise to the rotations profile ϕp shown in Figure 4.7. Integrating
again, it results in the plastic contribution to the lateral displacements up, which value
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Figure 4.7: Curvature – chord rotation relationships [111, 113, 117, 118].

at the top of the pier is the sum of up1 and up2 calculated through Equations (4.2d) and
(4.2e), respectively. Finally, the ultimate rotation of the lumped spring at the base of
the pier ϕSu is given by Equations (4.2f).

ue = φyH
2/3 (4.2a)

ϕSy = ue/H (4.2b)

ϕp = (φu − φy)Lp (4.2c)

up1 = ϕpLp/2 (4.2d)

up2 = ϕp(H − Lp) (4.2e)

ϕSu = (ue + up1 + up2)/H (4.2f)

4.4 Selection of input earthquake records

Two alternatives are open for the record selection. On the one hand, an accelerogram
recorded on a site where the geological conditions and the fault type are equivalent
to the site of interest, or on the other hand, the acceleration signal can be modified
attending to its response spectrum. If the last is the case, the response spectrum of the
signal must match the design response spectrum of the standard for the particular site
class. The use of modified ground motions is the preferred choice in the records selection
for the present research due to two closely related reasons: (i) the limited number of
accelerograms recorded on each specific geological conditions and fault type, and (ii) the
savings in time when looking for the particular site class selection along the available
databases, e.g. [119–124].

Also, there is software dedicated to generate artificial accelerograms by combining
different Fourier amplitudes and phases spectrum in the frequency domain. It follows
an iterative procedure until its response spectrum is consistent with the design response
spectrum. By adopting this procedure, the final synthetic signal would not looks like an
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actual earthquake ground motion, leading to high uncertainties on its adequacy to the
analyses. This is the great disadvantage of using synthetic signals.

Nowadays, the earthquake records selection and scaling for nonlinear analyses con-
stitutes by itself a significant research line, see e.g. [125–128]. Regardless of the selection
approach, ground motions are often scaled by factors for the matching of its response
spectrum to the design response spectrum defined by the standards. Some researchers
have argued that there is no need to limit the scale factors and that scaling does not
cause bias in the demands. On the other hand, some have found that scaling may induce
bias, depending on how ground motions were selected. Moreover, other researchers have
suggested that the value of the results from scaling is questionable [129]. As bias could
be introduced in the structural response, and despite there exist different recommenda-
tions in the literature about the use of scale factors, here, as a more conservative option,
a limited use of them has been assumed.

4.5 Overview of the methodology employed for the

computation of the system response

The first sections of this chapter have presented the main features of the problem under
study. The aim of this section is providing an overview of the methodologies employed
to address the problem at hand and compute the response of the system. The approach,
that includes both frequency domain and time domain analyses, is sketched in Figure 4.8.
Each one of the aspects represented in Figure 4.8 will be discussed along this section
with the aim of presenting a general picture of the methodology. Then, the next sections
will develop in detail the different aspects involved.

Through a substructuring scheme as the one used in this Part II of the dissertation,
the advantages of both time domain and frequency domain approaches are combined.
In viaducts and bridges, nonlinearities are usually concentrated in the piers base, where
plastic hinges develop when an earthquake occurs. Regarding the soil-foundation system,
the assumption of linearity is generally adopted due to standard constraints, that states
that foundations must be designed to remain in the elastic range, while for the piers, a
certain damage grade would be assumed. Therefore, nothing prevents from addressing
the analysis of the soil-foundation system in the frequency domain, and then including
the foundation resistant forces, i.e. the impedance functions, into the substructuring
system though an LPM. Then, the simulations can be performed in the time domain
allowing the implicit analysis of the plastic hinges at the piers base, and hence addressing
its nonlinear behaviour.

The substructuring scheme used herein (see Section 4.8) takes into account the main
features of the structure of the bridge and the soil-foundation-structure dynamic interac-
tion phenomena, including kinematic interaction (see Section 4.6). In this substructuring
model, the soil medium and the foundation are represented by a boundary condition link-
ing the degrees of freedom associated with the nodes on the interaction interface between
soil-foundation and superstructure systems. This boundary condition will be formulated,
in the frequency domain, based on dynamic impedances relating the displacement of the
nodes in the interface to the corresponding forces. The input signal to the system is
the seismic signal recorded at the soil free-field multiplied by the kinematic interaction
factors. For the analysis of the soil-pile foundation systems, BEM-FEM and Winkler
type formulations have been used (see Section 4.6). Those models allow the compu-
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Figure 4.8: Scheme of the substructuring methodology for computing the nonlinear
response of piled bridge piers.
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tation of both the impedance functions and the kinematic interaction factors of linear
soil-foundation systems. Aditionally, two different soil material damping models have
been taken into account: (a) the classical non-causal frequency-independent hysteretic
damping model, and (b) the causal Biot’s damping model (see Section 4.7).

For analyses in the time domain of the substructuring scheme, the obtained frequency-
dependent impedances are fitted by using LPMs with frequency-independent masses,
springs and dampers that reproduce the dynamic behaviour of the soil-foundation system
(see, e.g., [130]). The use of these models leads to some loss of precision, but it allows the
analysis of nonlinear behaviours of the structure. Also, LPMs can be straightforwardly
incorporated into dedicated software for structural analysis that usually works in time
domain. Two different LPMs having different complexity and possibilities are used in
this study (see Section 4.9).

The numerical evaluation of the governing equations of motion of a linear substruc-
turing system when it is subjected to an earthquake acceleration are calculated both in
the time domain and in the frequency domain. Therefore, the governing equations are
formulated for a time-stepping procedure or in time-harmonic form (see Section 4.8.1).
If any nonlinearity is involved into the superstructure, of whatever type, i.e. contact,
material or geometric, the analysis is carried out in the time domain.

There exist many numerical time-stepping methods in the literature for the inte-
gration of the system differential equations. The most common and extended are the
Newmark’s family methods, published in 1959 [131], or the unconditionally stable Wil-
son’s method [132]. However, simpler methods based on a finite difference approxima-
tion of the time derivatives of displacements, velocities and accelerations are suitable
for substructuring schemes with a few degrees of freedom. Here, the Newmark’s lin-
ear acceleration method is used in the time domain linear simulations carried out in
Chapter 5, while the central difference method formulated in terms of absolute values of
displacements, velocities and accelerations is used for the computation of the nonlinear
systems tackled in Chapter 6 (see, e.g., [74]).

On the other hand, for the computation of the response analysis of linear systems
to excitations varying arbitrarily with time through the frequency domain method, it is
necessary to define the complex frequency-response transfer matrix, which defines the
harmonic response of the system (see [106]). The complex frequency-response transfer
matrix is represented by the equations of motion constituting an algebraic system in the
frequency domain, and it is obtained by inverting the dynamic stiffness matrix of the
system. This matrix, together with the complex form of the Fourier series of the input
signal, provides the response of the system to an earthquake acceleration. The Fourier
series of the excitation is obtained through the Fast Fourier Transform (FFT) of the
earthquake record. The product of this transform and the complex frequency-response
transfer matrix yields the complex frequency-response of the system to that particular
input signal. Then, applying the inverse Fast Fourier Transform (FFT−1) to the complex
frequency-response of the system, the system response is obtained as a function of time.

The methodology described here is used for obtaining the results discussed in Chap-
ter 5. The system linear response is studied attending to two different aspects in the soil-
foundation modelling. On the one hand, the material damping model assumed for the soil
domain, and on the other hand, the type of LPM used for replacement of the frequency-
dependent impedance functions. Concerning the soil material damping, two models
are compared, the classical frequency-independent and non-causal hysteretic damping
model and Biot’s damping model [76] which is causal and with a damping rate almost
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frequency-independent. And about the LPM used, two different schemes are compared,
the consistent of Wolf [67, 68] and the one proposed by Carbonari et al. [133]. As will
be shown, both LPMs have different complexity and possibilities, and their sensitivity
in the superstructure response is evaluated.

Finally, the results discussed in Chapter 6 show the damage reduction in bridge piers
when using inclined piles foundations. For carrying out the simulations, it is necessary
to compute the analyses in the time domain by using the proper nonlinear rules for
the piers behaviour. Also the response is analysed in the frequency domain by using
equivalent linear rules for verification and comparison purposes. The response of the
system is evaluated in terms of pier ductility demand and energy balances between
kinetic energy, radiation and material damping energies, superstructure viscous damping
energy, recoverable strain energy and superstructure yielding energy dissipation along
the execution time.

4.6 Models used for the computation of impedances

and kinematic interaction functions

In this work, impedance functions and kinematic interaction factors of piles foundations
are computed through two different approaches.

On the one hand, a three-dimensional model for the time-harmonic dynamic analysis
of piles and pile groups embedded in homogeneous isotropic viscoelastic soils was used.
Piles are modelled using FEM as beams according to the Bernoulli hypothesis, while
the soil is modelled using BEM as a continuum, semi-infinite, isotropic, homogeneous,
linear, viscoelastic medium (see Figure 4.9). In the coupling between the pile and the
soil, welded boundary contact condition at the pile-soil interfaces are assumed. It is
also assumed that the soil continuity is not altered by the presence of the piles, and the
tractions at the pile-soil interface are considered as a body load applied within the half-
space. The formulation allows the analysis of problems including soil strata, rigid rocky
beds and any topography for the soil surface. If compared with a multi-domain pure
BEM in which the pile domain must be discretized, the number of degrees of freedom, and
hence the computation cost, is drastically reduced by assuming one-dimensional beam
FEM elements instead of the pile BEM domain. Taking advantage of the particular
characteristics of each one of the methods, accurate results are obtained through this
more efficient and still rigorous tool for the time harmonic dynamic analysis of piles and
pile groups. More details can be found in [23, 134–136].

On the other hand, the Winkler-type model developed by Dezi et al. [9, 137] for the
dynamic analysis of pile foundationsnis also used. In this model, piles are discretized by
assuming one-dimensional beam FEM elements and the soil by assuming a Winkler-type
medium, i.e., mutually independent layers of soil giving a calibrated stiffness to the pile
elements displacement (see Figure 4.10). The disadvantage of the Winkler-type medium
is the lack of continuity between soil layers. Both the piles and soil are considered to
behave linearly. The pile-soil-pile interaction is taken into account considering the elas-
todynamic Green’s functions. Using this fundamental solution is possible to express the
mutual interactions between all the piles of the group and the radiation problem consis-
tently without using the stepped analysis generally adopted in the technical literature.
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Figure 4.9: Example of a 3 × 3 pile group BEM-FEM discretization (only a quarter of
the geometry is shown) [23].

Figure 4.10: Schematic model of the pile group embedded in the Winkler-type medium
and connected by a rigid cap [9].
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4.7 Modelling of the soil material damping

The dissipation of energy in the soil medium is usually modelled through frequency-
independent hysteretic damping of the type

M = Re[M](1 + iξ) (4.3)

where ξ is the damping coefficient and M is a material property (shear or Young’s mod-
ulus, for example). The use of this model is generally justified by the independence
between the excitation frequency and the amount of energy dissipated in each cycle for
some materials [138, 139], and it is massively used due to its convenience in harmonic
analysis. However, its use in the analysis of non-stationary (transient) vibrations, either
through Fourier analysis or directly in the time domain, is problematic for various rea-
sons [140]. The first feature of this model that can be seen as incongruous is the non-zero
imaginary component of the response in ω = 0. Further analyses show that its use leads
to non-causal models, which implies that a material that responds to a law of the type
of the Equation (4.3) is physically impossible, i.e. in no case can this model respond to
reality. Hereafter, this classical hysteretic damping model is labelled as “hysteretic”.

The first hysteretic model, both causal and with a damping rate almost independent
of frequency, was proposed by Biot in 1958 [76]:

M(ω) = Re[M]
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where both real and imaginary parts vary with frequency but, at ω = 0, imaginary part
vanishes (M(ω = 0) → Re[M]). Here, ǫb is a real and positive number with the same
units than ω, and can be seen as a reference frequency that defines the function variation
and for which the material property acquires the value M(ω = ǫb) = Re[M](1+ 0.22ξ+
iξ/2). The parameter ǫb controls how wide is the detachment to the response computed
with the classical hysteretic damping model (Equation (4.3)). In order to illustrate this
aspect, Figure 4.11 shows the real and imaginary parts of M for both damping models
and, in the case of the damping model of Biot, for different values of ǫb. Concerning soil-
foundation impedance functions, the differences that arise from the comparison between
the two damping models for the soil material are produced mainly at the lower frequency
range for damping coefficients and at higher frequencies for spring coefficients (see for
instance Figure 5.4).

4.8 Substructuring scheme

By considering the in-plane response of the soil-foundation-pier system, the whole prob-
lem is described as the three degree-of-freedom system depicted in Figure 4.12, with uF

and ϕF being the translation and rotation of the foundation, ϕS the relative rotation of
the pier with respect to the foundation, and ug and ϕg the translational and rotational
FIM. It is worth noting that, by assuming pile layouts characterised by two symme-
try axes and by referring the impedance matrix of the soil-foundation systems to the
centroids of the pile configuration at the level of the pile head, the vertical degree-of-
freedom is uncoupled from the horizontal and rotational ones and is not included in the
formulation. Thus, the significant components of the soil-foundation impedance matrix
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Figure 4.11: M values assuming ξ = 0.1 for the hysteretic and Biot’s damping models.

are the horizontal, rotational and coupled roto-translational terms, represented in the
Compliant Base (CB) model of the pier in Figure 4.12 through linear frequency depen-
dent visco-elastic Kelvin-Voigt’s models at the foundation-superstructure interface. FB
models will be also considered, whose results will be used to address and discuss the
significance of the SSI effects.

In Figure 4.12, md and mc are the masses of bridge deck portion belonging to the
generic pier, and of the pier bent cap, respectively. Furthermore, mp and mf are the
masses of the pier and the pile cap, and Id, Ic and If are the mass moments of inertia of
the deck and the bent cap, and of the pile cap, respectively. Lumped at the pier base,
the plastic hinge behaviour of the pier is represented by the nonlinear spring Kφ and the
nonlinear dashpot Cφ. Finally, hd, hc, hp and hf are dimensions necessary to account
for the position of the mass centroids of the deck, the bent cap and the pile cap.

4.8.1 Equations of motion

As seen in Section 4.5, by assuming a linear elastic behaviour for the pier and neglecting
second-order effects (i.e. making the hypothesis of small displacements), the system
can be solved directly in frequency domain using the complex frequency dependent soil-
foundation impedances. The equations of motion of the CB system shown in Figure 4.12
may be conveniently written in the frequency domain as
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where mass matrix coefficients are

m11 =(hp + hc + hd)
2md + Id +
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p
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2
(4.6a)
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Figure 4.12: CB and FB substructuring models of the in-plane dynamic response of the
soil-foundation-pier systems.
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(4.6b)

m13 =(hp + hc + hd)(hf + hp + hc + hd)md + Id +

(

hp +
hc

2

)(

hf + hp +
hc

2

)

mc+

+ Ic + hp(hf + hp)
mp

2
(4.6c)
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being ω the frequency of excitation and “i” the imaginary unit. Stiffness and damping
coefficients shown in Equation (4.5) are obtained from the complex-valued frequency-
dependent impedance functions Zhh(ω) = khh(ω) + iωchh(ω), Zrr(ω) = krr(ω) + iωcrr(ω)
and Zhr(ω) = khr(ω) + iωchr(ω), representing the stiffness and damping of the foun-
dation in the horizontal, rocking and cross-coupled horizontal-rocking vibration modes
respectively.

In Equation (4.5), ΦS, UF and ΦF are the superstructure and foundation generalised
relative displacements in the frequency domain (ϕS, uF and ϕF will represent these
magnitudes in the time domain), while Ug and Φg are the generalised displacements
constituting the FIM derived from the kinematic interaction analysis of the pile foun-
dation in the frequency domain (ug and ϕg will represent these magnitude in the time
domain). The three equations of motion describe the moment equilibrium of the pier,
the horizontal force and moment equilibrium of the superstructure-foundation system,
respectively.

To account for the superstructure nonlinearity it is mandatory to carry out the anal-
yses in the time domain. In this case, a time-stepping approach, as the well known
Newmark’s method, can be adopted to obtain the problem solution. The problem for-
mulation in the time domain requires a suitable strategy to account for the frequency-
dependent behaviour of the soil-foundation system. Usually, LPM yields impedances
that approximate those of the soil-foundation system in a selected frequency range of
interest [130] (see Section 4.9). From a general point of view, Equation (4.5) can be
written in the time domain as
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(4.7)

where the symbol denotes the frequency independent stiffness, damping and mass
matrices and vectors derived from the LPM parameters, which are developed in detail in
Section 4.9. On the other hand, ˙ denotes the time derivative. Depending on the LPM
complexity, hidden degrees of freedom (l) may be included in the equilibrium equations.

Notice that terms Cφ and Kφ, that account for the system nonlinearities, have been
suitably decoupled from the linear contributions in Equation (4.7) to allow for an easy
implementation and control of the solution in the time-stepping integration method.

The FB model is a one degree-of-freedom system, expressed in terms of the pier
relative rotation ϕS. Its governing equation is the moment equilibrium, i.e. the first
equation of the system presented in Equation (4.5) for frequency domain analyses, and
in Equation (4.7) for time domain analyses. In FB models, no kinematic interaction is
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considered, i.e. the input signal coincides with the scaled horizontal free-field ground
motion (ug0) as shown in Figure 4.12. Then, resulting equation for frequency domain
analyses is

(Kφ − ω2m11 + iωCφ)ΦS = ω2m12Ug0 (4.8)

being Ug0 the FFT of the scaled horizontal free-field ground motion (ug0), and the re-
sulting equation for time domain analyses is

m11ϕ̈S + Cφϕ̇S +KφϕS = −m12üg0 (4.9)

4.8.2 Energy balance

The input energy to the system is dissipated through different mechanisms. If the system
is computed assuming FB hypothesis and the pier doesn’t yields, all the input energy is
dissipated by viscous damping in the superstructure. On the contrary, if the bridge is
considered to be founded on an elastic foundation (CB model) and the pier yields, part
of the input energy is dissipated by viscous damping in superstructure and foundation,
and part is dissipated by the hysteretic cycles of the plastic hinge.

The contribution of each mechanism to the energy dissipation for a specific configura-
tion provides useful information to understand the capability of the system to withstand
the earthquake excitation.

The energy balance is computed pre-multiplying Equation (4.7) by the system veloc-
ity and integrating over the time [74,141]. The right-hand side of the resulting equation
is the input energy to the system:
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The input energy is balanced during the motion by the kinetic energy (EI) due to
the inertial forces, the energy dissipated by viscous damping in foundation (EDfound

) and
superstructure (EDsuper

), the recoverable strain energy in the foundation (EKfound
) and

the strain energy in the superstructure (EKsuper
) which includes both yielding and elastic

components. All energy contributions are expressed in Equation (4.11).
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EDsuper
=

∫ t

0

ϕ̇S Cφ ϕ̇S dt (4.11d)

EKsuper
=

∫ t

0

ϕ̇S Kφ ϕS dt (4.11e)

After the earthquake has finished, and the system has damped out completely, the
kinetic energy and the recoverable strain energy vanish, being all the input energy dis-
sipated by viscous damping and by yielding in the pier.

Considering FB systems, the energy balance is computed pre-multiplying Equa-
tion (4.9) by the pier rotation velocity ϕ̇S and integrating over the time. The different
quantities are computed as follows:

Ein = −

∫ t

0

ϕ̇S m12 üg0 dt (4.12a)

EI =
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ϕ̇S m11 ϕ̈S dt (4.12b)
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ϕ̇S Cφ ϕ̇S dt (4.12c)

EKsuper
=

∫ t

0

ϕ̇S Kφ ϕS dt (4.12d)

4.9 Lumped parameter models for the representa-

tion of the soil-pile foundation system

The accuracy of an LPM in reproducing the dynamic behaviour of the soil-foundation
system depends on its configuration and degrees of freedom. Use of LPMs leads to some
loss of precision, but this is compensated by the possibility of performing nonlinear anal-
yses in time domain. To this end, it is necessary to replace of the soil-pile foundation
frequency-dependent impedances by an equivalent scheme constituted by a configura-
tion of springs, dampers and masses with real and constant values that reproduce the
impedances of the soil-pile foundation system, i.e. Zhh(ω) ≈ Ẑhh(ω), Zhr(ω) ≈ Ẑhr(ω)
and Zrr(ω) ≈ Ẑrr(ω). The two alternative LPMs used in this study to compute the
seismic response of superstructures in the time domain are presented in this section. On
the one hand, a consistent LPM, as described for instance by Wolf [67, 68] or Ander-
sen [142, 143] is used. On the other hand, an alternative simplified LPM, based on the
work by Carbonari, Dezi and Leoni [133], is also evaluated. Details above both studied
schemes are explained in the following.

4.9.1 Consistent LPM

Each impedance component can be expressed as Shh(a0) = Zhh(a0)/Z
0
hh, Shr(a0) =

Zhr(a0)/Z
0
hr and Srr(a0) = Zrr(a0)/Z

0
rr where Z

0
hh, Z

0
hr and Z0

rr denote the static stiffness
of each impedance term Zhh(0), Zhr(0) and Zrr(0), and a0 denotes the dimensionless
frequency, typically a0 = ωd/cs in the case of piles and groups of piles, where d denotes
the pile diameter and cs is the soil shear-wave velocity. The frequency-dependent stiff-
ness dimensionless coefficients Shh(a0), Shr(a0) and Srr(a0) are then decomposed into
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a singular parts Ss
hh(a0), S

s
hr(a0) and Ss

rr(a0), and regular parts Sr
hh(a0), S

r
hr(a0) and

Sr
rr(a0):

Shh(a0) = Ss
hh(a0) + Sr

hh(a0) (4.13a)

Shr(a0) = Ss
hr(a0) + Sr

hr(a0) (4.13b)

Srr(a0) = Ss
rr(a0) + Sr

rr(a0) (4.13c)

being the singular parts decomposed, likewise, in:

Ss
hh(a0) = κ∞

hh + ia0γ
∞

hh (4.14a)

Ss
hr(a0) = κ∞

hr + ia0γ
∞

hr (4.14b)

Ss
rr(a0) = κ∞

rr + ia0γ
∞

rr (4.14c)

For simplicity, any indices indicating the impedance term are omitted in the following,
e.g. Zhh(a0), Zhr(a0), Zrr(a0) ∼ Z(a0). In Equation (4.14), κ∞ and γ∞ are two real
constants which are selected so that Z0Ss(a0) provides the entire stiffness in the high-
frequency limit a0 → ∞. The regular part Sr(a0) is the remaining part of the stiffness
and is found as Sr(a0) = Z(a0)/Z

0 − Ss(a0).
Generally, a closed expression for Sr(a0) is unavailable. Hence, the regular part of

a complex stiffness is usually obtained by fitting a rational filter to each impedance
component. A rational approximation can be conveniently written as:

Sr(a0) ≈ Ŝr(ia0) =
1− κ∞ + p1(ia0) + p2(ia0)

2 + ...+ pM−1(ia0)
M−1

∏N

n=1(ia0 − sn)(ia0 − s∗n)
∏M−N

n=N+1(ia0 − sn)
, 2N ≤ M

(4.15)
where an asterisk (*) denotes the complex conjugate [67, 68].

The curve-fitting of the rational filter to the regular part of the dynamic stiffness is
made by a least-squares technique (see Equation (4.16)), where the roots sn are identified
as the optimization variables in addition to the coefficients of the numerator polynomial,
x = [p1, p2, · · · , pM−1, s1, s2, · · · , sN , sN+1, sN+2, · · · , sM−N ].

minx||(Ŝ
r(x, ia0)− Sr(a0)) Ψ(a0)||

2
2 = minx

∑

i

((Ŝr(x, ia0i)− Sr(a0i)) Ψ(a0i))
2 (4.16)

In order to obtain a stable solution in the time domain, the poles of Ŝr(ia0) should
all reside in the second and third quadrant of the complex plane [142], i.e. the real parts
of the poles must all be constrained in the fitting procedure:

Re[sn] < 0 (4.17)

Due to the nature of a specific LPM, a bad fitting to the reference impedance functions
in a particular frequency range can be obtained. So, in order to prioritize the fitting in
a particular range, a frequency-dependent weight function Ψ(a0) | 0 ≤ Ψ(a0) ≤ 1 could
be employed.

Experience shows that as many as possible of the roots should appear as complex
conjugates [142]. In order to have all roots as complex conjugates, N = M/2 should be
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used if M is even. This provides a good fit in most situations and may, at the same
time, generate the LPM with fewest possible internal degrees of freedom. This leads to
the following simplification in the rational approximation:

Sr(a0) ≈ Ŝr(ia0) =
1− κ∞ + p1(ia0) + p2(ia0)

2 + ...+ pM−1(ia0)
M−1

∏N

n=1(ia0 − sn)(ia0 − s∗n)
, M = 2N

(4.18)
being the optimization variables in this case x = [p1, p2, · · · , pM−1, s1, s2, · · · , sN ].

Once the poles and the coefficients in the numerator are calculated, they have little
insight into the physics of the problem. In order to obtain physical meaningful coeffi-
cients, a recasting of Equation (4.18) into partial-fraction form should be carried out
as

Ŝr(ia0) =
M
∑

m=1

Rm

(ia0 − sm)
(4.19)

where sm are the poles of Ŝr(ia0), and Rm are the corresponding residues. If the two
conjugate complex and the corresponding residues are added together, a second-order
term with real coefficients appears, so the partial-fraction form can be rewritten as:

Ŝr(ia0) =
N
∑

n=1

β0n + β1nia0
α0n + α1nia0 + (ia0)2

(4.20)

The real coefficients α0n, α1n, β0n and β1n are obtained through simple mathematical
operations between poles and residues of the complex conjugate terms. This leads to:

α0n = {Re(sn)}
2 + {Im(sn)}

2 (4.21a)

α1n = −2{Re(sn)} (4.21b)

β0n = −2({Re(Rn)}{Re(sn)}+ {Im(Rn)}{Im(sn)}) (4.21c)

β1n = 2{Re(Rn)} (4.21d)

Regarding the second-order discrete-element scheme, among all different schemes
existent in the literature (see e.g. [67, 142]), the one used herein is represented in Fig-
ure 4.13. This particular second-order model has one internal node with a concentrated
mass, which is linked to the soil with a spring and a dashpot, and to the superstruc-
ture interface, i.e. the master node, with other spring and dashpot. Also, by using this
second-order scheme, the master node is directly connected to the soil by another spring
and dashpot. For harmonic loading, the equilibrium formulations between the master
node (Node 0) and the hidden degree of freedom (Node n) is defined as follows:

Node 0:

(

γ2
n

̺n
− κ1n − γn

d

cs
(iω)

)

U0 +

(

κ1n + γn
d

cs
(iω)

)

(U0 − Un) = F0 (4.22a)

Noden:

(

κ2n + γn
d

cs
(iω) + ̺n

d2

c2s
(iω)2

)

Un +

(

κ1n + γn
d

cs
(iω)

)

(Un − U0) = 0

(4.22b)

and recalling ω = a0cs/d, it leads to the equations in terms of a0 instead of ω:
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Figure 4.13: Adopted scheme for the second-order discrete-element model [99, 142, 143].

Node 0:

(

γ2
n

̺n
− κ1n − γn(ia0)

)

U0 + (κ1n + γn(ia0)) (U0 − Un) = F0 (4.23a)

Noden:
(

κ2n + γn(ia0) + ̺n(ia0)
2
)

Un + (κ1n + γn(ia0)) (Un − U0) = 0 (4.23b)

After some rearrangement and elimination of the internal degree of freedom, the
force-displacement relation of the second-order model is given by:

F0 =

γ2
n

̺2n
(κ1n + κ2n)−

κ2
1n

̺n
+ 2

(

γ3
n

̺2n
− κ1nγn

̺n

)

(ia0)

κ1n+κ2n

̺n
+ 2γn

̺n
(ia0) + (ia0)2

U0 (4.24)

By equating the coefficients in Equation (4.24) to the terms of the second-order model
in Equation (4.20), the four parameters κ1n, κ2n, γn and ̺n can be determined:

α0n =
κ1n + κ2n

̺n
(4.25a)

α1n =
2γn
̺n

(4.25b)

β0n =
γ2
n

̺2n
(κ1n + κ2n)−

κ2
1n

̺n
(4.25c)

β1n = 2

(

γ3
n

̺2n
−

κ1nγn
̺n

)

(4.25d)

The system of Equations (4.25) results in a quadratic equation for calculating ̺n:

(α4
1n − 4α0nα

2
1n)̺

2
n + (16β0n − 8α1nβ1n)̺n +

16β2
1n

α1n

= 0 (4.26)

and hence two possible solutions are obtained for ̺n. To ensure real values of ̺n, the
following condition must be satisfied:

(

2
β0n

β1n

− α1n

)2

− α3
1n + 4α0nα1n ≥ 0 (4.27)

and in terms of the optimization variables:
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Figure 4.14: Proposed scheme for the consistent LPM.

(

{Im(Rn)}

{Re(Rn)}

)2

− 2{Re(sn)} ≥ 0 (4.28)

The real part of the poles of the rational filter have been constrained to positive
values in the optimization process (see Equation (4.17)), so the expression shown in the
left side of Equation (4.28) always leads to positive values, and hence Equation (4.26)
always leads to real values of the ̺n parameter. Once the ̺n has been calculated, the
remaining parameters of the second order scheme are obtained as follows:

κ1n =
̺nα

2
1n

4
−

β1n

α1n
(4.29a)

κ2n = ̺nα0n − κ1n (4.29b)

γn =
̺nα1n

2
(4.29c)

In some cases, deciding which one of the two values of ̺n to take is critical: a positive
value is beneficial because the majority of the discrete springs and dampers will then
be also positive as they depends on the mass value. The case with a higher amount of
positive parameters values is better for ensuring stability in time domain executions. But,
if ̺n results in a value various orders of magnitude higher, or smaller, than the other
masses corresponding to the other second order schemes, contemplating the negative
value could be beneficial.

As already stated, the approximation of an impedance function term consists of the
sum of the singular part of the stiffness, and N second-order terms corresponding to the
regular part of the stiffness. This leads to the final scheme shown in Figure 4.14.
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Up to this point, the calculated values of the LPM (κ∞, γ∞, ̺n, κ1n, κ2n and γn)
agree to the frequency-dependent stiffness dimensionless coefficient S(a0) but not to the
frequency-dependent stiffness Z(a0). Then, the LPM values must be multiplied by the
static stiffness Z0 in order to obtain the final values related to Z(a0):

k∞ = κ∞Z0 (4.30a)

c∞ = γ∞Z0 (4.30b)

mn = ̺nZ
0 (4.30c)

k1n =

(

γ2
n

̺n
− κ1n

)

Z0 (4.30d)

k2n = κ1nZ
0 (4.30e)

k3n = κ2nZ
0 (4.30f)

c1n = −γnZ
0 (4.30g)

c2n = γnZ
0 (4.30h)

c3n = γnZ
0 (4.30i)

If the impedance terms are preferred to be expressed in terms of ω, i.e. Z(ω) instead
of Z(a0), the following values are used:

k∞ = κ∞Z0 (4.31a)

c∞ = γ∞Z0 d

cs
(4.31b)

mn = ̺nZ
0d

2

c2s
(4.31c)

k1n =

(

γ2
n

̺n
− κ1n

)

Z0 (4.31d)

k2n = κ1nZ
0 (4.31e)

k3n = κ2nZ
0 (4.31f)

c1n = −γnZ
0 d

cs
(4.31g)

c2n = γnZ
0 d

cs
(4.31h)

c3n = γnZ
0 d

cs
(4.31i)

Finally, the arising system of equations considering hidden degrees of freedom is
assembled according to Equation (4.7). The assemblage of the different LPM vectors
and matrices that compounds the overall system of equations is as follows:

uT
l =

[

uhh urh uhr urr

]

(4.32a)

mhh = 0 (4.32b)

mhr = 0 (4.32c)

mrr = 0 (4.32d)
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Mll =









Mhh 0 0 0
0 0 Mhr 0
0 Mhr 0 0
0 0 0 Mrr









(4.32e)

chh = c∞hh +
N
∑

n=1

(chh1n
+ chh2n

) (4.32f)

chr = c∞hr +

N
∑

n=1

(chr1n + chr2n) (4.32g)

crr = c∞rr +
N
∑

n=1

(crr1n + crr2n) (4.32h)

chl =
[

chh 0 chr 0
]

(4.32i)

crl =
[

0 chr 0 crr
]

(4.32j)

Cll =









Chh 0 0 0
0 0 Chr 0
0 Chr 0 0
0 0 0 Crr









(4.32k)

khh = k∞

hh +

N
∑

n=1

(khh1n
+ khh2n

) (4.32l)

khr = k∞

hr +
N
∑

n=1

(khr1n + khr2n) (4.32m)

krr = k∞

rr +

N
∑

n=1

(krr1n + krr2n) (4.32n)

khl =
[

khh 0 khr 0
]

(4.32o)

krl =
[

0 khr 0 krr

]

(4.32p)

Kll =









Khh 0 0 0
0 0 Khr 0
0 Khr 0 0
0 0 0 Krr









(4.32q)

where

uhh =
[

uhh1
uhh2

· · · uhhn
· · · uhhN

]

(4.33a)

urh =
[

ϕrh1
ϕrh2

· · · ϕrhn
· · · ϕrhN

]

(4.33b)

uhr =
[

uhr1 uhr2 · · · uhrn · · · uhrN

]

(4.33c)

urr =
[

ϕrr1 ϕrr2 · · · ϕrrn · · · ϕrrN

]

(4.33d)
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Mhh =























mhh1
0 0 · · · · · · 0

0 mhh2
0

...
...

...

0 0
. . . 0

...
...

... · · · 0 mhhn
0

...
... · · · · · · 0

. . . 0
0 · · · · · · · · · 0 mhhN























(4.33e)

Mhr =























mhr1 0 0 · · · · · · 0

0 mhr2 0
...

...
...

0 0
. . . 0

...
...

... · · · 0 mhrn 0
...

... · · · · · · 0
. . . 0

0 · · · · · · · · · 0 mhrN























(4.33f)

Mrr =























mrr1 0 0 · · · · · · 0

0 mrr2 0
...

...
...

0 0
. . . 0

...
...

... · · · 0 mrrn 0
...

... · · · · · · 0
. . . 0

0 · · · · · · · · · 0 mrrN























(4.33g)

chh =
[

−chh21
−chh22

· · · −chh2n
· · · −chh2N

]

(4.33h)

chr =
[

−chr21 −chr22 · · · −chr2n · · · −chr2N
]

(4.33i)

crr =
[

−crr21 −crr22 · · · −crr2n · · · −crr2N
]

(4.33j)

Chh =























chh21
+ chh31

0 0 · · · · · · 0

0 chh22
+ chh32

0
...

...
...

0 0
. . . 0

...
...

... · · · 0 chh2n
+ chh3n

0
...

... · · · · · · 0
. . . 0

0 · · · · · · · · · 0 chh2N
+ chh3N























(4.33k)

Chr =























chr21 + chr31 0 0 · · · · · · 0

0 chr22 + chr32 0
...

...
...

0 0
. . . 0

...
...

... · · · 0 chr2n + chr3n 0
...

... · · · · · · 0
. . . 0

0 · · · · · · · · · 0 chr2N + chr3N























(4.33l)
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Crr =























crr21 + crr31 0 0 · · · · · · 0

0 crr22 + crr32 0
...

...
...

0 0
. . . 0

...
...

... · · · 0 crr2n + crr3n 0
...

... · · · · · · 0
. . . 0

0 · · · · · · · · · 0 crr2N + crr3N























(4.33m)

khh =
[

−khh21
−khh22

· · · −khh2n
· · · −khh2N

]

(4.33n)

khr =
[

−khr21 −khr22 · · · −khr2n · · · −khr2N
]

(4.33o)

krr =
[

−krr21 −krr22 · · · −krr2n · · · −krr2N
]

(4.33p)

Khh =























khh21
+ khh31

0 0 · · · · · · 0

0 khh22
+ khh32

0
...

...
...

0 0
. . . 0

...
...

... · · · 0 khh2n
+ khh3n

0
...

... · · · · · · 0
. . . 0

0 · · · · · · · · · 0 khh2N
+ khh3N























(4.33q)

Khr =























khr21 + khr31 0 0 · · · · · · 0

0 khr22 + khr32 0
...

...
...

0 0
. . . 0

...
...

... · · · 0 khr2n + khr3n 0
...

... · · · · · · 0
. . . 0

0 · · · · · · · · · 0 khr2N + khr3N























(4.33r)

Krr =























krr21 + krr31 0 0 · · · · · · 0

0 krr22 + krr32 0
...

...
...

0 0
. . . 0

...
...

... · · · 0 krr2n + krr3n 0
...

... · · · · · · 0
. . . 0

0 · · · · · · · · · 0 krr2N + krr3N























(4.33s)

4.9.2 Simplified LPM

As shown in Figure 4.15, this scheme is constituted by a two degree–of–freedom LPM
characterized by a translational mass mh and a mass moment of inertia Ir at the
foundation-structure interface, connected to the soil through translational and rotational
pairs of constant springs and dashpots kh, ch, kr and cr. Furthermore, masses are con-
nected to an additional eccentric translational mass mt, spring kt and dashpot ct through
rigid massless links of lengths h3, and h2, respectively. The dynamic impedances arising
from this model can be expressed as:

khh(ω) ≈ kh + kt − ω2(mh +mt) (4.34a)
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Figure 4.15: Scheme of the simplified LPM [133].

chh(ω) ≈ ch + ct (4.34b)

krr(ω) ≈ kr + kth
2
1 − ω2(Ir +mth

2
3) (4.34c)

crr(ω) ≈ cr + cth
2
2 (4.34d)

khr(ω) ≈ kth1 − ω2mth3 (4.34e)

chr(ω) ≈ cth2 (4.34f)

where all real and imaginary terms are parabolic and linear functions of ω, respectively.
The presence of the additional mass mt at a certain depth makes the model able to

capture the coupled roto–translational dynamic response of the foundation, and contrary
to the approach adopted for the consistent LPM, the fitting process of the translational,
rotational and coupled impedance functions are made simultaneously. Also, thanks to
the rigid link, the dynamic stiffness matrix of the LPM can be condensed on the degrees
of freedom of the master node on the foundation-structure interface (i.e. there are no
hidden nodes). Another advantage of this configuration is the possibility of an easy
implementation in many commercial software. However, conventional software usually
do not allow the introduction of negative values of masses, dampers and springs, so, in
order to maintain this advantage in the simplified model, all real constants of the scheme
are forced to be positive, with the only exception of the different lengths of the rigid link
(h1, h2 and h3). The resulting parabolic horizontal and rocking stiffness functions are
concave due to the positive values of the masses, with a positive static value. On the
contrary, the crossed stiffness can be convex and the static value can be positive or not,
depending on the sign of h1 and h3. Furthermore, since the hidden variable condensation
produces non-diagonal terms in the mass matrix of the system, it may be convenient to
introduce the rigid link and the eccentric mass when simulating with structural analysis
software since non-diagonal mass matrices are often not available.

All the parameter values x = [kh, kr, kt, ch, cr, ct, mh, Ir, mt, h1, h2, h3] that define the
model are found directly through a nonlinear least square fitting procedure of the re-
sponse of the LPM in terms of impedance functions to the reference impedance functions
(see Equation (4.34)):
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minx||((Ẑhh(x, ω)− Zhh(ω)) + (Ẑhr(x, ω)− Zhr(ω)) + (Ẑrr(x, ω)− Zrr(ω))) Ψ(ω)||22 =

= minx

∑

i

(((Ẑhh(x, ωi)−Zhh(ωi))+(Ẑhr(x, ωi)−Zhr(ωi))+(Ẑrr(x, ωi)−Zrr(ωi))) Ψ(ωi))
2

(4.35)

where the weight function Ψ(ω) | 0 ≤ Ψ(ω) ≤ 1 could be employed, similarly to the
consistent LPM, to prioritize the fitting in a range.

In the case of this simplified approach, the LPM parameters are assembled in the
system of equations (Equation (4.7)) as follows:

ul = ∅ (4.36a)

mhh = mh +mt (4.36b)

mhr = mth3 (4.36c)

mrr = Ir +mth
2
3 (4.36d)

Mll = ∅ (4.36e)

chh = ch + ct (4.36f)

chr = cth2 (4.36g)

crr = cr + cth
2
2 (4.36h)

chl = ∅ (4.36i)

crl = ∅ (4.36j)

Cll = ∅ (4.36k)

khh = kh + kt (4.36l)

khr = kth1 (4.36m)

krr = kr + kth
2
1 (4.36n)

khl = ∅ (4.36o)

krl = ∅ (4.36p)

Kll = ∅ (4.36q)
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Chapter 5

Influence of the soil damping model
and the lumped parameter
representations of the foundation

5.1 Introduction

In this chapter, the influence on the computed seismic response of bridge piers on pile
groups of two closely related aspects is quantified: i) the adoption of the classical non-
causal hysteretic damping model for the soil, or the causal Biot’s damping model; and ii)
the implementation of a relatively complex consistent LPM based on a rational approx-
imation, or a more simplified LPM, to represent the behaviour of the foundation. As
will be shown later, both aspects are studied simultaneously because the choice of soil
damping can significantly influence the ability of the LPMs to capture the impedances
of the pile group foundations. To achieve this goal, a wide parametric study involving
different soil profiles and superstructures is carried out in order to be able to draw gen-
eral conclusions. The analysis is carried out into a linear-elastic framework so that the
conclusions of the study provide an informed starting point for the study of the more
involved nonlinear case addressed in Chapter 6. The dynamic problem is both solved
in the frequency domain and in the time domain (see Section 4.5), by adopting the
two different LPMs described in Section 4.9 to approximate the soil-foundation system
behaviour.

5.2 Configurations under study

Four realistic superstructures, characterised by fundamental periods Tn = 0.2 s, Tn = 0.5
s, Tn = 1.0 s and Tn = 1.5 s, are considered in this study (see Table 5.1). Mass
and geometric properties comply with steel-concrete composite continuous bridge decks
with span length of 25 m. A force-based approach is adopted to design the FB piers
on both soil deposits, obtaining longitudinal reinforcement ratios ranging between 1.3–
3.0%. Piers are founded on six different pile foundations, constituted by 2 × 2 and
3 × 3 vertical piles groups with diameter d = 1.0 m, pile length L = 20.0 m, and three
different pile-to-pile spacings s (3, 5 and 7 m). Foundations are selected to balance
the need of parametrically addressing the effects of the foundation deformability on the
superstructure response with that of considering realistic scenarios. Overall, they comply



Superstructure 1 2 3 4
Tn [s] 0.2 0.5 1.0 1.5
fn [Hz] 5.0 2.0 1.0 0.6
md [t] 305.8 305.8 305.8 305.8
Id [t m2] 2466.6 2466.6 2466.6 2466.6
hd [m] 0.59 0.59 0.59 0.59
mc [t] 88.3 88.3 88.3 88.3
Ic [t m

2] 426.6 426.6 426.6 426.6
hc [m] 1.80 1.80 1.80 1.80
mp [t] 57.6 121.1 196.0 253.6
hp [m] 5.0 10.5 17.0 22.0
Kφ [MN/rad] 23067.6 10984.6 6784.6 5242.6
Real period [s] 0.2001 0.5082 1.0076 1.4841

Table 5.1: Superstructures parameters.

2× 2 (θ = 0◦, 5◦ and 10◦) 3× 3
s = 3 [m] s = 5 [m] s = 7 [m] s = 3 [m] s = 5 [m] s = 7 [m]

hf [m] 1.5 2.0 2.5 2.0 2.5 3.0
mf [t] 93.75 245.00 506.25 320.00 900.00 1920.00
If [t m2] 212.89 1082.08 3680.86 1813.33 11268.75 42400.00

Table 5.2: Pile cap properties depending on foundation layout for CB model.

with stress resultants at the pier bases in the 80% of cases, being the 2× 2 layout with
spacing 3 m and 3× 3 layout with spacing 7 m border line configurations. The pile cap
mass and inertial properties, which depend on the foundation layouts, are summarized
in Table 5.2. Finally, pile inclination can exert an important influence on the response
of the superstructure [94, 95]. For this reason, inclined piles are also considered in the
analyses of the 2× 2 foundations, with rake angles θ of 5◦ and 10◦.

Piles Young’s modulus and density are Ep = 30.0 GPa and ρp = 2.5 t/m3, respec-
tively. The pier elastic flexural spring (Kφ) is calibrated to reproduce the fundamental
period of the system, while the damping coefficient (Cφ) is calibrated to obtain a 5%
viscous damping ratio at the fundamental period of the pier. FB models will be also con-
sidered (Figure 4.12), whose results will be used to address and discuss the significance
of the SSI effects.

5.3 Soil properties and seismic actions

Foundations are assumed to be embedded in two different soil deposits, representative of
a soil type D (loose-to-medium cohesionless soil or predominantly soft-to-firm cohesive
soil) and of a soil type C (dense or medium-dense sand, gravel or stiff clay), according
to Eurocode 8 [109]. With reference to the softer soil deposit, a soil density ρs = 1.56
t/m3, shear wave velocity cs = 117.1 m/s, soil Poisson’s ratio νs = 0.4 and soil damping
coefficient ξs = 5% are assumed, while for the stiffer deposit, representative of a ground
type C, a soil density ρs = 1.67 t/m3, shear wave velocity cs = 253.5 m/s, Poisson’s ratio
νs = 0.4 and soil damping coefficient ξs = 5% are considered.
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Database
Earthquake

WC–EC
Station ID

Date

[dd/mm/yy]
∆

[km]
Magnitude

[Mw]

PGA
[

m/s
2
]

ITACA
Val Nerina
138–036

BVG 19/09/1979 38.0 5.8
0.222
y–dir

ITACA
Umbria–Marche 1st shock

363–099
BVG 26/09/1997 24.9 5.7

0.372
x–dir

ITACA
Umbria–Marche 2nd shock

394–100
RTI 26/09/1997 65.0 6.0

0.184
y–dir

ITACA
App. Umbro–Marchigiano

429–111
BVG 06/10/1997 21.9 5.4

0.349
x–dir

ITACA
Umbria–Marche 3rd shock

482–118
BVG 14/10/1997 23.8 5.6

0.359
y–dir

ESD
Izmit (aftershock)

6947–2154
3270 31/08/1999 39 5.1

0.358
y–dir

ESD
Izmit (aftershock)

6967–0473
767 13/09/1999 120 5.8

0.391
x–dir

Table 5.3: Selected records for ground type D (WC: Waveform Code and EC: Earthquake
Code) [119, 123].

The seismic action is constituted by a set of 7 real accelerograms for each soil deposit,
selected from the European and Italian strong motion databases [119,123]. The selection
criterion is based on both the Magnitude (Mw > 5) and the site classification (records
registered on soil type C and D); the limited number of eligible records for selection
required the inclusion of mainshock and aftershocks of the same event. The selected
records are reported in Tables 5.3 and 5.4 for deposits D and C, respectively; also their
acceleration time histories are shown in Figures 5.1 and 5.2 for deposits D and C, respec-
tively. For each superstructure, accelerograms are scaled in order to obtain the matching
of the pseudo spectral acceleration of each accelerogram with the response spectrum pro-
posed in the standard [109] at the fundamental periods of the FB systems, as shown in
Figure 5.3 in which the mean response spectrum of the scaled set of accelerograms are
reported for each superstructure on both soil deposits.

5.4 Error measurement

The large number of cases involved in the study requires a way to synthesize the results
so that the influence of the different parameters can be evaluated. Firstly, the effective-
ness of the different LPMs when used to obtain the system response in time domain is
measured using Equation (5.1), where x stands for the degree of freedom under consid-
eration (ϕS, uF or ϕF ), “sdm” stands for the soil damping model considered (hysteretic
or Biot’s), and “lpm” stands for the LPM used (simplified or consistent). This measure
of the differences takes into account the entire earthquake duration of the seismic signal,
being P the total amount of time steps in the time history. Results obtained through
the frequency domain method of response are chosen as reference.

εsdmxlpm
=

√

√

√

√

∑P

i=0(x
sdm
lpm,i − xsdm

freq. domain,i)
2

∑P

i=0(x
sdm
freq. domain,i)

2
(5.1)

On the other hand, the influence of the soil damping model is quantified using Equa-
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Figure 5.1: Time histories of the selected records for ground type D (see Table 5.3).
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Chapter 5. Influence of the soil damping model and the LPM

Figure 5.2: Time histories of the selected records for ground type C (see Table 5.4).

81



Database
Earthquake

WC–EC
Station ID

Date

[dd/mm/yy]
∆

[km]
Magnitude

[Mw]

PGA
[

m/s
2
]

ESD
Friuli (aftershock)

133–63
33 15/09/1976 9 6.0

0.932
y–dir

ESD
Campano Lucano

299–146
105 23/11/1980 52 6.9

0.471
x–dir

ESD
Manjil
475–230

184 20/06/1990 91 7.4
1.295
x–dir

ESD
Racha (aftershock)

529–248
199 15/06/1991 72 6.0

0.169
x–dir

ESD
Izmit

1251–472
773 17/08/1999 92 7.6

0.911
x–dir

ESD
Ishakli

7097–2295
856 03/02/2002 66 6.5

1.106
x–dir

ESD
Ishakli (aftershock)

7104–2296
856 03/02/2002 35 5.8

0.507
y–dir

Table 5.4: Selected records for ground type C (WC: Waveform Code and EC: Earthquake
Code) [119].

tion (5.2). Again, this measure of the differences takes into account the entire earthquake
duration of the seismic signal. In this case, all responses are computed through the fre-
quency domain method of response analysis. Results corresponding to the hysteretic soil
damping model are chosen as reference.

χx =

√

√

√

√

∑P

i=0(xBiot,i − xhysteretic,i)2
∑P

i=0 x
2
hysteretic,i

(5.2)

5.5 Influence of soil damping model on impedance

and kinematic interaction functions

As a first step, impedance and kinematic interaction (KI) functions in the frequency
domain must be computed in order to build the different subestructuring models used in
the analyses. When doing so, soil damping is considered using either Biot’s or hysteretic
damping, so that its influence on the overall response can later be analysed. In order to
illustrate the effects on impedance functions of assuming one damping model or the other,
horizontal, rocking and crossed-coupled impedance functions (Zij(ω) = kij(ω)+iωcij(ω))
are presented in Figure 5.4 in terms of stiffness (kij(ω)) and damping (cij(ω)) functions,
for both hysteretic and Biot’s models (see solid and dashed black lines, respectively), for
the specific case of a 2×2 vertical pile group, embedded in a type D ground and with a
pile-to-pile spacing s = 7m. The impedance functions related to all the soil-foundations
systems used in this Chapter 5 are presented in Appendix A.

The main difference between both models lies in the damping coefficient at very
low frequencies. As anticipated, the hysteretic model produces a damping function
such that the imaginary part of the impedance function is non-zero at ω = 0, while
Biot’s model leads to a finite damping function at zero, which implies an imaginary
part of the impedance function that vanishes for a static situation. On the contrary,
the damping functions obtained with both models are almost coincident for frequencies
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Chapter 5. Influence of the soil damping model and the LPM

Figure 5.3: Mean response spectrum of the resulting sets of accelerograms scaled for each
superstructure and ground type (Ground type D in continuous line and Ground type C
in dashed line).

above 5 Hz. Stiffness functions, on the other hand, coincide at low frequencies, but differ
at frequencies above 10 Hz, with Biot’s model leading to larger stiffness values. In this
work, a value of ǫb = 0.15cs/(2πd) Hz is chosen for the Biot’s model (see Section 4.7),
which derives in two cases depending on the soil type, ǫb = 2.80 Hz for D case and
ǫb = 6.05 Hz for C.

Kinematic interaction factors are also affected by the soil damping model chosen for
the analysis. In order to illustrate the magnitude of this effect, Figure 5.5 presents mod-
ulus and phase of the translational and rotational kinematic interaction factors obtained
for the same configuration presented above (see curves for the vertical case), together
with the normalized mean Fourier amplitude spectrum of the ground motion, scaled for
superstructure 3 (Tn = 1.0 s). The classical hysteretic soil damping model predicts a
slightly larger filtering effect for the translational kinematic interaction factors, with a
larger induced rotation of the foundation for frequencies below 11 Hz. On the contrary,
Biot’s soil damping model predicts larger rotations for frequencies above 11 Hz. On the
other hand, the phase of the rotational kinematic interaction function illustrates very
clearly the incoherences arising from the use of the standard hysteretic damping model,
with a non-zero phase delay for the static situation. Apart from this, the phase of the
translational motion is larger when the hysteretic model is assumed. The kinematic
interaction factors related to all the soil-foundations systems used in this Chapter 5 are
presented in Appendix A.

In any case, the relevance of the differences between impedance or kinematic inter-
action functions obtained from one damping model or the other will depend on other
aspects such as the magnitude of the SSI effects, or the natural frequencies of the super-
structure. Depending on the properties of the superstructure, foundation and/or seismic
input, certain differences in one function or frequency range can be important or to-
tally anecdotal. Therefore, the influence of the damping model must also be assessed
analysing the magnitude of the differences arising in the superstructural response due to
this aspect. For this reason, subsequent sections will focus not on impedance or kine-
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Figure 5.4: Illustration of the computed and fitted impedance functions for one of the
configurations analyzed (vertical 2×2, s = 7 m foundation layout in ground type D).
Continuous and dashed black lines represent impedance functions assuming hysteretic
and Biot’s damping models, respectively; blue and green lines represent fitted functions
using consistent LPM with orders N = 2 and N = 4, respectively; red lines represent
fitted functions using simplified LPM; and Ψ represents the weight functions used by the
LPM approaches (defined in Equations (5.3a) and (5.3b)).
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Figure 5.5: Illustration of the computed kinematic interaction factors for 2×2, s =
7m foundation layout in ground type D with vertical and inclined piles. Continuous
and dashed black lines represent kinematic interaction factors assuming hysteretic and
Biot’s damping models, respectively; the gray line represents normalized mean Fourier
amplitude spectrum of the ground motion, scaled for superstructure 3 (Tn = 1.0 s).

matic interaction functions, but on differences on the response at the superstructure.
As an illustration example in this case, the effect of the differences highlighted above
between impedances and kinematic interaction functions for the particular case of the
2×2 pile group, will be examined below.

Firstly, the small differences appreciated in the kinematic interaction factors between
damping models translate to even smaller differences when observing the translational
kinematic input motion üg shown in Figure 5.6 together with the free field ground motion
üg0 and the rotational kinematic input motion ϕ̈g for the same specific case subjected
to 429–111 earthquake (see Table 5.3) and scaled for superstructure 3 (Tn = 1.0 s). For
instance, the magnitude of the differences arising at one of the most significant peaks of
the signal (at t = 9.915 s) can be quantified in 1.6% and 8.3% for the translational and
the rotational kinematic interaction functions, respectively. It is worth noting that, as
illustrated in Figure 5.5, the predominant frequencies of the ground motion are located
in the range where the filtering produced by the foundation is still not significant.

Regarding the LPM fitting necessary for time domain analyses, the initial fitting fre-
quency range is 0–20 Hz. However, due to its nature, a bad fitting of damping coefficients
in the lower frequency range is obtained, even if a high LPM order is used, when trying
to fit functions obtained with the hysteretic soil damping model. In this case, the refer-
ence damping functions tend to infinity when approaching a zero frequency; a behaviour
that cannot be reproduced by the LPM models (see Paronesso and Wolf [144]). Consis-
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Figure 5.6: Time history of 429–111 earthquake acceleration (Table 5.3), scaled for su-
perstructure 3 (Tn = 1.0 s); and FIM derived from soil-foundation kinematic interaction
analysis. Vertical 2×2, s = 7 m foundation layout in ground type D.

tent LPM functions are symmetric with respect to frequency, which implies a null slope
at the static frequency, fact that strongly influences the result of the fitting procedure.
Simplified LPM functions, on the other hand, can not catch fluctuations of the refer-
ence impedance functions, so that the models’ ability to reproduce the soil-foundation
impedances in a selected frequency range strongly depends on their variability with fre-
quency. For the present study, the variability associated to pile-to-pile resonant peaks
tends to appear at frequencies above the superstructure fundamental frequencies consid-
ered herein. It is also worth mentioning that the influence of the static stiffness in the
problem at hand makes it mandatory to give somehow more importance to the lower
frequency range. For this reasons, in order to balance the bad fitting at lower frequency
range, the following frequency-dependent weight functions depending on the LPM model
are employed:

Ψconsistent(ω) =
(

1 +
(

c1
cs
d
ω
)c2

)

−c3

(5.3a)

Ψsimplified(ω) =H(fc) (5.3b)

with c1 = 4.0, c2 = 2.0 and c3 = 2.0 in the first function [142,143], fc a cut-off frequency
set at 6 Hz, and H() being the unit step function. With these expressions, represented
in Figure 5.4 for reference, substantially more importance is given to the frequency range
were the superstructure fundamental frequencies reside, and significantly more accurate
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χ ε (hysteretic) ε (Biot)
Cons. N = 2 Cons. N = 4 Simpl. Cons. N = 2 Cons. N = 4 Simpl.

ϕS 0.136 0.079 0.087 0.018 0.056 0.040 0.095
uF 0.168 0.099 0.102 0.055 0.063 0.049 0.156
ϕF 0.169 0.102 0.112 0.037 0.071 0.050 0.111

Table 5.5: Differences between damping models and errors committed by using the
different LPM approaches in the results shown in Figure 5.7.

structural responses are obtained. The resulting fittings of the impedance functions,
either through the simplified LPM or the consistent LPM with N = 2, related to all the
soil-foundations systems used in this Chapter 5 are presented in Appendix A.

On the other hand, Figure 5.7 presents results corresponding to the response of the
particular case of the Tn = 1.0 s superstructure, founded on the vertical 2×2 pile group
on soil deposit D, whose impedance and kinematic interaction functions were presented
above, and subject to earthquake 429–111 (see Table 5.3), so that the corresponding
FIM is the one shown in Figure 5.6. The response of the system in terms of the three
degrees of freedom defined above (translation uF and rotation ϕF of the foundation,
and relative rotation of the pier with respect to the foundation ϕS) is computed by
solving Equation (4.5) directly in the frequency domain and considering both hysteretic
and Biot’s models (see black lines). FB response is also presented for reference. The
difference between FB and CB responses illustrates the relevance of the SSI effects.
Differences between the two soil damping models (differences between continuous and
dashed black lines) are much less important than those due to SSI effects (differences
between continuous or dashed black lines and the dotted black line), being the influence
of the soil damping model on the response of the superstructure smaller than that on
the response at the foundation level, i.e. the differences between the continuous and
dashed black lines are higher in uF and ϕF than in ϕS. The quantification, in this
particular case, of the differences between results obtained from both damping models
(χ) is presented in Table 5.5 for illustration purposes together with the error committed
when using the LPM approaches (ε).

5.6 Parametric analysis

The combination of the superstructures, foundation layouts, soil deposits, soil damping
models and seismic actions described above defines the set of configurations whose seismic
response is analysed in the present study. In short, four different bridge superstructures
characterized by different fundamental periods (Tn = 0.2 s, Tn = 0.5 s, Tn = 1.0 s and
Tn = 1.5 s) can be founded on twelve groups of piles layouts on the foundation (2 × 2
and 3 × 3 vertical pile groups, and 2 × 2 inclined pile groups with θ = 5◦ and θ = 10◦,
with spacings of 3, 5 and 7 m) embedded on two different deposits (D and C), subjected
to seven different seismic signals for each ground type. At the same time, two different
soil damping models are considered (hysteretic and Biot’s), and the problems are solved
by means of three different methodologies; the frequency-domain method of response,
and two time-stepping approaches computed through the Newmark’s linear acceleration
method [131], in which the foundation behaviour is modelled through the different LPMs
described above (simplified and consistent). Overall, also including FB cases, a total of
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Figure 5.7: Time history of superstructure and pile cap degrees of freedom. Particular
case of vertical 2 × 2, s = 7 m foundation layout in ground type D (impedance func-
tions and kinematic interaction factors shown in Figures 5.4 and 5.5 respectively) using
superstructure 3 (Tn = 1.0 s) and earthquake 429–111 (Table 5.3).
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Histeretic Biot

k∞

hh [kN/m] 6.0376·105 6.4897·105

c∞hh [kNs/m] 2.5885·104 1.1521·104

khh11
[kN/m] -1.3088·107 -1.5287·105

chh11
[kNs/m] -3.5064·104 -6.6897·103

khh21
[kN/m] 3.5913·107 1.3731·106

khh31
[kN/m] 2.1167·107 3.8616·105

mhh1
[t] 5.3864·101 3.6674·101

chh21
[kNs/m] 3.5064·104 6.6897·103

chh31
[kNs/m] 3.5064·104 6.6897·103

khh12
[kN/m] 4.4108·105 5.7124·105

chh12
[kNs/m] -2.9833·103 -4.3366·103

khh22
[kN/m] -3.7489·105 -4.6775·105

khh32
[kN/m] 8.5036·105 1.2250·106

mhh2
[t] 1.3445·102 1.8173·102

chh22
[kNs/m] 2.9833·103 4.3366·103

chh32
[kNs/m] 2.9833·103 4.3366·103

Table 5.6: Resulting parameter values from the fitting with the consistent LPM with
N = 2. Horizontal impedance component. Particular case of vertical 2 × 2, s = 7 m
foundation layout in ground type D (impedance functions shown in Figure 5.4).

4088 different cases have been analysed. The results of this large set are synthesized
below.

This section presents the results of the parametric analyses studying the influence of
the soil damping model and of the LPM, on the seismic response of the system. Given
the large number of cases under analysis, the results are synthesized and presented in
different ways in order to highlight different effects. For a better understanding of such
statistical analysis and of the methodology used to produce the base results, the response
of the specific configuration tackled in the previous section is first presented in detail in
terms of its time response.

After having computed impedance and kinematic interaction functions, the second
step in every analysis is to obtain the LPM that represents the compliance of the foun-
dation under consideration. For the specific 2 × 2 vertical pile group discussed above,
embedded in the soil deposit D and with a pile spacing of s = 7m, Figure 5.4 presents
three different sets of fitted impedance functions together with the original stiffness and
damping functions, already discussed above, computed with the BEM–FEM approach
for both soil damping models. One of the fitted sets is obtained through the simplified
LPM proposal, while the two other sets are obtained through the consistent LPM ap-
proach with two and four internal degrees of freedom (N = 2 and N = 4), respectively.
The resulting parameter values from the fitting with the LPMs are shown in Tables 5.6
to 5.12 for this particular case.

The LPMs obtained through the consistent approach are able to fit the stiffness
functions very accurately along the whole frequency range, with errors increasing with
frequency, as can be expected taking into account the weighting function that has been
used. The fitting of the damping functions is also quite remarkable except for the very low
frequencies when fitting the hysteretic impedances. In this case, the damping functions
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Histeretic Biot

k∞

rr [kNm] 1.4687·106 1.6007·107

c∞rr [kNsm] 8.4595·105 6.1664·105

krr11 [kNm] -3.9741·107 -3.4534·106

crr11 [kNsm] 4.3145·104 7.9177·102

krr21 [kNm] 3.3130·107 3.2977·106

krr31 [kNm] -3.9741·107 -3.4534·106

mrr1 [tm2] -2.8159·102 -4.0258·100

crr21 [kNsm] -4.3145·104 -7.9177·102

crr31 [kNsm] -4.3145·104 -7.9177·102

krr12 [kNm] 2.2829·107 -1.0129·107

crr12 [kNsm] -2.7550·104 1.4873·106

krr22 [kNm] -2.1071·107 -4.5973·107

krr32 [kNm] 2.4682·107 -1.5552·108

mrr2 [tm2] 4.3167·102 -3.9427·104

crr22 [kNsm] 2.7550·104 -1.4873·106

crr32 [kNsm] 2.7550·104 -1.4873·106

Table 5.7: Resulting parameter values from the fitting with the consistent LPM with
N = 2. Rocking impedance component. Particular case of vertical 2 × 2, s = 7 m
foundation layout in ground type D (impedance functions shown in Figure 5.4).

Histeretic Biot

k∞

hr [kN] -1.0003·106 -9.7033·105

c∞hr [kNs] -9.1292·103 -7.3646·103

khr11 [kN] 5.0570·106 -4.3993·105

chr11 [kNs] 5.5595·104 5.3784·102

khr21 [kN] -1.1232·107 3.4987·105

khr31 [kN] 4.0406·106 -4.6733·105

mhr1 [tm] -5.0054·102 -3.2120·100

chr21 [kNs] -5.5595·104 -5.3784·102

chr31 [kNs] -5.5595·104 -5.3784·102

khr12 [kN] -7.8921·106 -9.8656·105

chr12 [kNs] 1.7903·105 1.8462·104

khr22 [kN] -6.3652·106 -5.0011·104

khr32 [kN] -7.8927·106 -9.8656·105

mhr2 [tm] -2.2482·103 -3.2882·102

chr22 [kNs] -1.7903·105 -1.8462·104

chr32 [kNs] -1.7903·105 -1.8462·104

Table 5.8: Resulting parameter values from the fitting with the consistent LPM with
N = 2. Cross-coupled horizontal-rocking impedance component. Particular case of
vertical 2× 2, s = 7 m foundation layout in ground type D (impedance functions shown
in Figure 5.4).
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Histeretic Biot

k∞

hh [kN/m] 6.3282·105 2.0564·106

c∞hh [kNs/m] 1.1757·104 9.4935·103

khh11
[kN/m] 5.0907·106 -9.2414·105

chh11
[kNs/m] -1.8984·104 -1.9428·103

khh21
[kN/m] -5.0678·106 1.2836·106

khh31
[kN/m] 9.2743·108 1.7265·105

mhh1
[t] 1.5776·104 1.0050·101

chh21
[kNs/m] 1.8984·104 1.9428·103

chh31
[kNs/m] 1.8984·104 1.9428·103

khh12
[kN/m] 1.8358·105 -1.3106·106

chh12
[kNs/m] -2.4158·102 -1.5163·105

khh22
[kN/m] -1.5322·105 1.0179·107

khh32
[kN/m] 1.8358·105 1.2070·107

mhh2
[t] 1.9226·100 2.5926·103

chh22
[kNs/m] 2.4158·102 1.5163·105

chh32
[kNs/m] 2.4158·102 1.5163·105

khh13
[kN/m] -4.4100·105 -1.0784·106

chh13
[kNs/m] -5.9645·104 -1.7783·103

khh23
[kN/m] 4.4530·106 1.1693·106

khh33
[kN/m] 2.1860·106 -9.6508·105

mhh3
[t] 8.8673·102 3.0477·101

chh23
[kNs/m] 5.9645·104 1.7783·103

chh33
[kNs/m] 5.9645·104 1.7783·103

khh14
[kN/m] 9.7057·105 1.2716·106

chh14
[kNs/m] -7.2473·103 -2.7744·104

khh24
[kN/m] -7.4169·105 7.0808·105

khh34
[kN/m] 1.7759·106 1.2718·106

mhh4
[t] 2.2947·102 3.8881·102

chh24
[kNs/m] 7.2473·103 2.7744·104

chh34
[kNs/m] 7.2473·103 2.7744·104

Table 5.9: Resulting parameter values from the fitting with the consistent LPM with
N = 4. Horizontal impedance component. Particular case of vertical 2 × 2, s = 7 m
foundation layout in ground type D (impedance functions shown in Figure 5.4).

tend to infinity as frequency approaches zero, a behaviour that the LPMs are unable to
reproduce because consistent LPM functions are symmetric, and therefore their slope
at frequency zero must be horizontal. It is also worth to highlight that the use of more
than two internal degrees of freedom does not always improve this fitting and, in general,
does not improve the overall result, reason why configurations with N = 2 will be used
in the following.

The fitted functions obtained using the simplified LPM approach are quite different
and, a priori, do not fit the original functions very well, although it will be shown later
that, in general, they are able to produce very good results. Simplified LPM stiffness
functions are parabolic, so can not accommodate complex phenomena as the group effect
present in this illustrated configuration. However, the fitting at the low frequency range,
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Histeretic Biot

k∞

rr [kNm] 3.9498·107 4.0207·107

c∞rr [kNsm] 6.8390·105 5.6024·105

krr11 [kNm] -2.6908·109 1.1490·107

crr11 [kNsm] -5.5213·106 6.5419·105

krr21 [kNm] 2.7519·109 -6.6612·107

krr31 [kNm] 2.6388·1011 -2.8429·108

mrr1 [tm2] 4.9888·105 -7.7640·103

crr21 [kNsm] 5.5213·106 -6.5419·105

crr31 [kNsm] 5.5213·106 -6.5419·105

krr12 [kNm] 2.7526·106 2.1769·107

crr12 [kNsm] -8.1327·106 7.6624·103

krr22 [kNm] 1.2740·109 -2.3097·107

krr32 [kNm] 1.8424·108 2.1769·107

mrr2 [tm2] 5.1804·104 -4.4194·101

crr22 [kNsm] 8.1327·106 -7.6624·103

crr32 [kNsm] 8.1327·106 -7.6624·103

krr13 [kNm] -1.3506·108 5.6676·106

crr13 [kNsm] -9.5502·105 -1.1572·106

krr23 [kNm] 2.2145·108 4.2724·107

krr33 [kNm] -5.7865·107 2.6769·108

mrr3 [tm2] 1.0556·104 2.7672·104

crr23 [kNsm] 9.5502·105 1.1572·106

crr33 [kNsm] 9.5502·105 1.1572·106

krr14 [kNm] 8.7862·107 -1.1337·108

crr14 [kNsm] -8.2939·105 -3.4416·105

krr24 [kNm] -5.2937·107 1.4113·108

krr34 [kNm] 2.0935·108 -9.4571·107

mrr4 [tm2] 1.9696·104 4.2671·103

crr24 [kNsm] 8.2939·105 3.4416·105

crr34 [kNsm] 8.2939·105 3.4416·105

Table 5.10: Resulting parameter values from the fitting with the consistent LPM with
N = 4. Rocking impedance component. Particular case of vertical 2 × 2, s = 7 m
foundation layout in ground type D (impedance functions shown in Figure 5.4).

prevalent when computing the response of the system, can be considered adequate,
especially for the rocking component. The resulting damping function is frequency–
independent, and represents the average damping in the frequency range of interest.

The fitted LPM functions for each configuration are used to compute the response of
the system using a time–domain step–by–step scheme. Figure 5.7 presents a comparison
between the time–history response of the system computed directly in the frequency
domain or in time domain with both LPM approaches, for the case discussed above and
for both soil damping models. From an engineering point of view, both LPMs are indeed
able to simulate well the soil–foundation compliance since quite small differences arise
between any one of them and the reference frequency domain results. In fact, the errors
induced by approximating the impedance functions through the LPM approaches are
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Histeretic Biot

k∞

hr [kN] -1.0230·106 -1.6705·106

c∞hr [kNs] -1.2237·104 -8.4932·103

khr11 [kN] -2.7528·106 -7.5732·104

chr11 [kNs] 2.5442·104 1.0839·103

khr21 [kN] 1.2823·106 1.6004·104

khr31 [kN] -5.2529·107 -1.0086·106

mhr1 [tm] -4.4016·102 -1.9670·100

chr21 [kNs] -2.5442·104 -1.0839·103

chr31 [kNs] -2.5442·104 -1.0839·103

khr12 [kN] -9.4689·106 -5.3106·105

chr12 [kNs] 1.3730·105 3.6800·104

khr22 [kN] -9.2571·106 -4.1843·106

khr32 [kN] -1.8569·107 -3.5199·106

mhr2 [tm] -1.0067·103 -2.8720·102

chr22 [kNs] -1.3730·105 -3.6800·104

chr32 [kNs] -1.3730·105 -3.6800·104

khr13 [kN] 1.3040·107 4.9831·107

chr13 [kNs] -1.3045·105 3.0126·106

khr23 [kN] 5.4237·106 -2.7849·108

khr33 [kN] 1.3070·107 4.9590·107

mhr3 [tm] 9.2165·102 -3.9691·104

chr23 [kNs] 1.3045·105 -3.0126·106

chr33 [kNs] 1.3045·105 -3.0126·106

khr14 [kN] -9.8858·104 -5.2719·107

chr14 [kNs] 6.2903·102 6.7139·106

khr24 [kN] 7.4956·104 -4.0509·108

khr34 [kN] -9.8859·104 -6.2738·107

mhr4 [tm] -1.6554·101 -9.8462·104

chr24 [kNs] -6.2903·102 -6.7139·106

chr34 [kNs] -6.2903·102 -6.7139·106

Table 5.11: Resulting parameter values from the fitting with the consistent LPM with
N = 4. Cross-coupled horizontal-rocking impedance component. Particular case of
vertical 2× 2, s = 7 m foundation layout in ground type D (impedance functions shown
in Figure 5.4).

smaller than the differences found between the responses of the system assuming one
damping model or the other (ε < χ, shown in Table 5.5).

However, for this particular case, a significant aspect is worth of notice: when a
hysteretic damping model is assumed for the soil, the overall error obtained by using
the simplified LPM is smaller than the one resulting from the use of the consistent LPM
(εHsimplified < εHconsistent) for all the degrees of freedom of the superstructure. Taking into
account that the structural response is mainly dominated by the fundamental frequency
of the CB system, this result should be related to a lower accuracy of the consistent LPM,
with respect to the simplified one, in reproducing the soil–foundation impedances around
that fundamental frequency. Taking a look at the hysteretic rocking damping function at
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Histeretic Biot

kh [N/m] 1.2312·108 1.6737·108

ch [Ns/m] 9.1413·105 5.7727·105

mh [kg] 2.1381·103 2.6333·104

kr [Nm] 3.7314·1010 3.7114·1010

cr [Nsm] 5.9098·108 5.3738·108

Ir [kgm2] 8.4807·102 6.4363·104

kt [N/m] 5.2498·108 4.9652·108

h1 [m] -1.9603·100 -2.1368·100

ct [Ns/m] 1.9365·107 1.8479·107

h2 [m] -7.0859·10−1 -6.9881·10−1

mt [kg] 9.2165·103 9.5746·103

h3 [m] 2.3496·101 1.9879·101

Table 5.12: Resulting parameter values from the fitting with the simplified LPM. Par-
ticular case of vertical 2 × 2, s = 7 m foundation layout in ground type D (impedance
functions shown in Figure 5.4).

the CB fundamental frequency of this system (0.89Hz for the fn = 1Hz superstructure)
on Figure 5.4, the values obtained with the simplified approach around this point are
closer to the reference function (that tends to infinity at low frequencies) than the ones
obtained from the consistent approach. The opposite occurs assuming Biot’s damping
model, εBsimplified > εBconsistent. In this case, for which the reference function is perfectly
bounded, the fitting obtained using the consistent approach is much more satisfactory.
It is worth noting that, as observed before, the use of a higher number of internal degrees
of freedom in the consistent LPM does not always lead to better results. For instance,
for a hysteretic soil damping model, the error is larger for N = 4 than for N = 2 (see
Table 5.5).

The way in which all these observations are affected by the properties of the system
under study will be discussed in the following. First of all, the magnitude of the SSI
effects will be evaluated (through Figures 5.8 and 5.9), given that all the aspects discussed
here are relevant only when this phenomenon is important (stiff soil–foundation systems
will be less affected by errors in the fitted functions because of the small relevance of
considering a CB system). Then, results will be synthesized to study the influence of
ground type, superstructure fundamental frequency, pile foundation configuration, and
pile inclination.

Thus, Figure 5.8 presents the contribution of the different degrees of freedom to the
horizontal displacement of the bridge deck for the 2016 vertical-pile cases considered in
this study. For each possible configuration, the mean maximum bridge deck displace-
ment over the seven earthquakes is presented in one vertical bar. Each of these bars is
divided in three sections, each one representing the contribution of a different degree of
freedom (foundation rotation, foundation displacement and superstructure rotation). To
represent the contribution of both rotations, ϕS and ϕF , to the lateral displacement of
the bridge deck, they are respectively multiplied by the length from the S node (base of
the pier) to the bridge deck centroid D (hS = hp + hc + hd), and the length from the F
node (ground level) to the bridge deck centroid D (hF = hf + hp + hc + hd), Figures 4.2
and 4.12. At the same time, these bars are grouped in sets of threes, each one in the
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set representing the results obtained following the frequency–domain method of response
analysis, or a time–stepping procedure in which the soil–foundation system is obtained
using a consistent (N = 2) or a simplified LPM approach. Finally, a different set of bars
is presented for each one of the configurations considered for a different superstructure,
foundation and soil damping model. FB response is also included for reference. Note
that the vertical scales used for different superstructures (plots in different rows within
the figure) change, with increasing ranges for increasing fundamental periods.

From the comparison between FB and CB models, it becomes clear that SSI phenom-
ena is relevant in most configurations. It is also worth noting that deck displacements are
always smaller if a hysteretic damping model is considered due to its higher foundation
damping at low frequencies.

Bridge deck maximum motions arising in the stiffest (and shortest) configurations are
much smaller than those arising in the softer (and taller) cases, but the relative contri-
bution of pile cap degrees of freedom is much more important in the first situation. On
the other hand, for any specific superstructure, deck displacements increase by reducing
the pile spacing or the number of piles constituting the group, as the stiffness of the soil–
foundation system decreases and, as a consequence, the contribution of the foundation
displacement and rocking increases. As expected, the contribution of the foundation
rocking is very significant for the soft soil D and tight foundations. In fact, for the
stiffest superstructures (Tn = 0.2 s and Tn = 0.5 s) on 2 × 2 pile groups, it represents
more than 50% of the total motion. This can be observed more clearly in Figure 5.9,
where the mean maximum magnitudes of foundation rotation and superstructure rela-
tive rotations computed in frequency domain are compared in a format similar to that of
Figure 5.8. The relative importance of the foundation rotation over the superstructure
relative rotation depends not only on the soil–foundation system compliance, but also
on the stiffness (and height) of the superstructure. The relative rotation of the super-
structure is prevalent for the three softest structures (Tn = 0.5 s, Tn = 1.0 s and 1.5 s)
with the only exception of the Tn = 0.5 s superstructure on the softest foundation. On
the other hand, foundation rotation is prevalent in the case of the stiffest superstructure
on a soft foundation. In this regard, it is interesting to note that, for a given founda-
tion and ground type, the magnitude of the foundation rotations tends not to change
significantly for different superstructures (while, as expected, the contribution of the
superstructure relative rotation increases significantly with softer superstructures). It is
also worth noting that Biot’s soil damping model (which predicts a slightly softer foun-
dation rocking response) tends to anticipate larger foundation rotations and, therefore,
larger superstructure deformations.

Figure 5.10 presents the contribution of the different degrees of freedom to the hori-
zontal displacement of the bridge deck for the 2016 inclined-pile cases considered in this
study (2 × 2 configurations with rake angles of 5◦ and 10◦), together with the vertical-
pile results for reference. As expected, inclined-pile configurations present significantly
smaller deck motions. This effect is more important for stiff structures in soft soils. The
reduction of displacements may be attributed to the contribution of the rocking com-
ponent of the FIM that is responsible for inertia forces in the superstructure that are
opposite in sign with respect to those produced by the horizontal component [94,95] (see
Figure 5.5). This observation is enforced by the fact that the fundamental frequencies
of the CB systems do not change significantly with the pile rake angles. More precisely,
when piles are inclined from θ = 0◦ to θ = 10◦, the increase of the fundamental frequency
of the system is always below 10%, depending on the soil-structure relative stiffness, as
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Figure 5.8: Contribution of the different degrees of freedom to the mean maximum lateral
displacement of the bridge deck uD (H: hysteretic damping model and B: Biot’s damping
model).
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Figure 5.9: Comparison between the mean maximum magnitudes of foundation rotation
and superstructure relative rotation using frequency domain approach (H: hysteretic
damping model and B: Biot’s damping model).

reported by Medina et al [145].

Figures 5.8 and 5.10 show how the three solution approaches adopted (frequency-
domain solution with the original impedance functions, and the two time-stepping ap-
proaches using two different LPM approaches to model the foundation response) provide
slightly different solutions. If hysteretic damping is assumed, the time-stepping ap-
proaches tend to predict bridge maximum motions that are slightly larger than those
obtained from the frequency–domain solution, being this the situation in 77.5% of the
cases analysed. On the contrary, when Biot’s damping is assumed, the bridge deck max-
imum lateral displacements predicted by the time–stepping approaches are smaller than
those of the frequency-domain solution in almost all cases (93.2% of the cases). This is
so because the responses computed directly in the frequency-domain are much more sen-
sitive to changing from Hysteretic to Biot’s damping than time-domain approaches (see
Figure 5.8), as part of the information is lost during the fitting process of the LPM. How-
ever, in order to evaluate which of the four considered approaches could be considered as
more conservative in terms of structural integrity, the variable of interest should be the
peak superstructure relative rotation ϕS. When the result obtained for this magnitude
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Figure 5.10: Contribution of the different degrees of freedom to the mean maximum
lateral displacement of the bridge deck uD considering inclined piles of 2 × 2 cases (H:
hysteretic damping model and B: Biot’s damping model).
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is compared among the four possible approaches, the assumption of Biot’s damping to-
gether with the adoption of the consistent LPM provides the highest relative rotations
in 72.9% of the cases which indicates that such approach could be adopted as the most
conservative option.

In order to assess the reliability of the two LPM approaches when used in this kind
of problems, it is mandatory though to quantify these differences, and to study how they
are affected by different aspects of the problem. For this reason, the next sections will
quantify the errors committed, with respect to the reference frequency-domain approach,
as a function of ground type, superstructure configuration, foundation layout and pile
inclination. Errors between each time-stepping procedure and the reference frequency-
domain solution (ε) and differences between soil damping models (χ) will be presented
in standard box-and-whisker diagrams (Figures 5.11 to 5.17), with results grouped in
the relevant way for each aspect. In all cases, differences between damping models
are presented in grey tones on the left side of the plots, while errors committed when
using one of the lumped parameter equivalent models is presented in blue (consistent,
N = 2) and red (simplified) colors. Results obtained from hysteretic and Biot’s damping
assumptions are presented separately in two adjacent subplots. All cases are plotted as
a set of three box-and-whisker representation, each of them representing the error or
difference measured on one of the three degrees-of-freedom of the system, in different
levels of darkness (as shown in the legends).

5.6.1 Influence of ground type on the accuracy of the responses
computed using LPMs

Figure 5.11 presents errors and differences for all vertical piles configurations grouped
according to the ground type D (left) or C (right), respectively. Errors arising in systems
founded on type C grounds (medium stiffness soils) tend to be significantly smaller than
those observed on type D grounds (soft soils). This is due to two main causes: a) as
expected, the magnitude of the SSI effects is much larger for the latter, i.e., the contri-
bution of the foundation response, where the approximations related to the LPMs lie, is
more relevant; and b) changing from type C to D grounds, resonances peaks that char-
acterise the impedances trends moves towards lower frequencies and impedances present
more regular trends that can be better approximated by LPMs. From an engineering
point of view, errors committed are very low, specially in type C grounds, and are largely
compensated by practical advantages deriving from the use of the LPM approaches (i.e.
possibility of using time-domain solution approaches, and of using dedicated computer
software for structural analysis that usually perform time domain analysis).

Regarding the influence of soil damping model, the overall errors obtained by consid-
ering the consistent and simplified LPMs are very similar when the hysteretic model is
assumed, though for medium stiffness soil the error deriving from the use of the simplified
LPM is slightly lower than that of the consistent LPM. For Biot’s damping model, on
the other hand, the overall error obtained with the consistent LPM is always lower than
that resulting from the simplified option. From an engineering point of view, the median
errors resulting from the LPM approach are limited (always below ε = 0.1, except for
the simplified option in the case of Biot’s damping model in soft soils). However, errors
are significantly scattered around the median values, except for the case of systems on
type C grounds considering Biot’s damping model.

It is worth noting that differences in the seismic response of the system deriving from
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Figure 5.11: Differences due to the use of hysteretic or Biot’s soil damping model, and
errors due to the use of LPM approaches. Influence of ground type.

the use of one damping model or the other are of the same order of magnitude (though
always slightly higher) than the errors produced by the approximation of the impedance
functions, which suggests that the errors committed when using any of these LPMs to
represent the foundation are less relevant than the effect of the simplifying assumptions
of the original model.

5.6.2 Influence of superstructure fundamental periods on the
accuracy of the responses computed using LPMs

Figures 5.12 and 5.13 synthesizes errors and differences for all vertical piles configura-
tions grouped according to the superstructure involved in each case, with the first figure
referring to structures on soft soils, and the second to medium soils. In general, overall
errors obtained by considering the consistent and simplified LPMs are very similar to
each other if soil hysteretic damping is assumed, although maximum errors committed
with the first option tend to be largest in stiff structures on medium soils, while those
committed with the second option are the ones that tend to be larger for stiff structures
on soft soils. With the exception of these specific cases, no advantage is clearly evident
from the use of one LPM or the other. On the other hand, when assuming Biot’s damp-
ing model, the overall errors committed due to the use of the consistent LPM tend to be
lower than that resulting from the simplified model.

The magnitude of the errors is almost independent of the fundamental period of the
superstructure (the median value is always around 0.08 < ε < 0.12). This observation
can be explained by the fact that soil-foundation impedances are well reproduced by both
LPMs in the frequency range covering the fundamental superstructure frequencies. The
soil–foundation impedances do not present articulated trends with frequency, namely no
resonance peaks occur in the frequency range where fundamental frequencies lie (except
for the 3×3, s = 7 m specific case) that cannot be captured by the simplified LPM. When
soil hysteretic damping is assumed, the LPM errors observed for superstructures with the
smallest fundamental period (Tn = 0.2 s) are much smaller than those obtained for the
rest of superstructures because their fundamental frequencies go beyond the frequency
range for which damping coefficients are unbounded.

Regarding soil type C, as already observed, errors are much lower than those arising
for soil type D. Furthermore, errors are also less scattered around the median value. This
is reasonably due to the even simpler trends of the soil-foundation impedances in the
frequency range in which the superstructure fundamental frequencies fall, and the lower
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Figure 5.12: Differences due to the use of hysteretic or Biot’s soil damping model, and
errors due to the use of LPM approaches. Influence of superstructure fundamental
periods (ground type D).
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Figure 5.13: Differences due to the use of hysteretic or Biot’s soil damping model, and
errors due to the use of LPM approaches. Influence of superstructure fundamental
periods (ground type C).
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magnitude of SSI.

5.6.3 Influence of pile foundation layouts on the accuracy of

the responses computed using LPMs

Figure 5.14 presents LPM errors for all vertical piles configurations in type D grounds,
grouped by foundation layout. As well known, by increasing the pile spacing, peaks
of the soil–foundation impedances due to group effects move towards lower frequencies.
Thus, for increasing pile spacing, the simplified LPM is no longer able to capture the
actual frequency behaviour of the soil–foundation impedances in the selected frequency
range. This observation is consistent with the significant increase of the overall errors
observed for the 3 × 3 cases when increasing the pile spacing (of around 100% from
s = 3m to s = 7m), independently from the adopted soil damping model. It is also
consistent with the fact that, for s = 7m, the errors committed when using the simplified
LPM are significantly larger than those committed when using the consistent approach,
for both 2 × 2 and 3 × 3 configurations. For the 2 × 2 pile foundations, an increase of
errors with pile spacing is not observed because pile group resonances do not arise in
impedance functions in the frequency range 0–6 Hz.

The largest errors arise for the softest soil–foundation configuration (2 × 2 and s =
3m) when a hysteretic soil damping model is assumed, with errors much larger than those
for Biot’s option or for other configurations. This is caused by the CB fundamental
frequency falling below 0.9 Hz, i.e. in a range where none of the LPM approaches is
able to capture the unbounded tendency of the damping function, and where, for the
analysed cases, the SSI effects are more relevant. Therefore, differences between reference
and approximated impedance functions have more influence on the final results.

Regarding the influence of soil damping model on the accuracies, when the hysteretic
damping model is assumed, the results obtained when using the simplified LPM tends to
be better than those obtained from the consistent option (except for s = 7m). On the
contrary, when Biot’s soil damping model is assumed, the results obtained when using
the consistent LPM tends to be better (except for the 3× 3 and s = 3m configuration).

On the other hand, Figure 5.15 presents LPM errors for all vertical piles configurations
in type C grounds, grouped by foundation layout. As stated in Section 5.6.1, lower error
values are obtained if compared with soil type D results (Figure 5.14 vs. Figure 5.15).
Previous observations concerning the increase of errors as the pile spacing increases do
not hold, since impedance functions of pile foundations systems embedded in soil type C
lack of resonant peaks due to pile-to-pile interaction in the frequency range of interest.

5.6.4 Influence of pile inclination on the accuracy of the re-

sponses computed using LPMs

Figures 5.16 and 5.17 synthesize LPM errors for all configurations with inclined piles
in type D and C grounds, respectively. From the comparison between Figures 5.14 vs.
5.16 and Figures 5.15 vs. 5.17, it can be inferred that the influence of pile inclination on
the errors committed is negligible. The general shape of impedance functions does not
change significantly with pile inclination (see for instance [136]) as resonant peaks reside
on the same frequency ranges, so that the ability of both lumped parameter methods to
approximate impedance functions is not altered. Only a subtle reduction in the overall
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Figure 5.14: Differences due to the use of hysteretic or Biot’s soil damping model, and
errors due to the use of LPM approaches. Influence of foundation layouts (ground type
D).
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Figure 5.15: Differences due to the use of hysteretic or Biot’s soil damping model, and
errors due to the use of LPM approaches. Influence of foundation layouts (ground type
C).
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errors is observed with pile inclination, mainly due to slight decrease in the magnitude
of the SSI phenomena (see Figure 5.10).

5.7 Conclusions

A wide parametric analysis has been performed in order to elucidate the influence of soil
damping model and type of LPM on the computed seismic response of bridge piers on pile
groups in cases where SSI phenomena are relevant. The study involved 4 different bridge
pier superstructures, 12 pile foundation configurations (with vertical or inclined piles), 2
soil deposits and 2 soil damping models (classical hysteretic and Biot’s damping model),
with the system subjected to 7 real earthquake signals scaled for each soil type. The
response of the system was computed using a substructuring approach in the frequency
domain and also in the time domain by approximating the response of the foundation
using two alternative LPMs of different complexity. Including also FB cases for reference,
4088 different cases in total were studied.

The impedance and kinematic interaction functions (previously computed using a
harmonic 3D BEM-FEM code) are dependent on the chosen soil damping model. The
most relevant differences appear in the low-frequency part of the damping functions, as
the damping coefficient provided by the classical hysteretic model is unbounded at zero
frequency, which leads to numerical difficulties for its fitting with LPMs. At higher fre-
quencies, on the contrary, differences grow in the stiffness and the kinematic interaction
functions.

Both the consistent and the simplified LPMs lead to approximated impedance func-
tions that are continuous and symmetric with respect to frequency, which make them
unable to fit the nonphysicial unbounded tendency of the damping coefficient of the
classical hysteretic damping model at zero frequency. The consequence is the impossi-
bility of a good matching at very low frequencies when such hysteretic damping model
is assumed for the soil, which is of special relevance in bridge piers, characterized by low
fundamental frequencies. In any case, from an engineering point of view, both LPMs
used in the study provide, in general, sufficiently low errors.

The magnitude of the influence of the soil damping model adopted for the study
is, as could not be otherwise, not as large as that of the SSI effects, being the influ-
ence at the foundation level more relevant than that at the superstructure. It is also
worth noting that larger displacements at the deck are predicted when Biot’s model is
adopted for the soil instead of the classical hysteretic model (due to the higher damping
at low frequencies provided by the latter one). At the same time, the errors induced by
approximating the impedance functions through the consistent or the simplified LPM
are generally slightly lower than the differences arising from assuming the classical hys-
teretic or the causal Biot’s models, i.e., the use of the simplified or the more accurate
consistent LPM has, in general, less influence on the computed responses than the dif-
ferent assumptions that are made in the process of building the structural model. In
terms of structural integrity, the assumption of Biot’s damping together with the adop-
tion of the consistent LPM could be adopted as the most conservative option, although
the limited magnitude of the differences among approaches can justify the use of the
simplest approach in most situations. However, it is worth noting that, in the present
document, superstructures are modelled as one degree-of-freedom systems in their FB
configuration, and are characterized by their fundamental frequency. This is one of the
reasons why even the simplified LPM, for which fitting errors can be significant after a
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Figure 5.16: Differences due to the use of hysteretic or Biot’s soil damping model, and
errors due to the use of LPM approaches. Influence of pile inclination in 2×2 pile groups
(ground type D).
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Figure 5.17: Differences due to the use of hysteretic or Biot’s soil damping model, and
errors due to the use of LPM approaches. Influence of pile inclination in 2×2 pile groups
(ground type C).
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given frequency, provides good results in most of the cases studied herein. Therefore, for
other types of superstructures, better characterized as multi degree-of-freedom systems,
more elaborate LPMs able to represent impedance functions accurately in a wider range
of frequencies (such as the consistent approach) would possibly be needed in order to
represent correctly the contribution of all vibration modes, so the simplest approaches
would probably not be suitable. The non-physical behaviour provided by the classical
hysteretic damping model for the soil at zero frequency makes the overall error commit-
ted by using the simplified LPM to model the foundation response smaller than the one
obtained when using the more elaborate consistent approach for medium stiffness soil
deposits. On the contrary, when assuming the causal Biot’s damping model for the soil,
the consistent LPM leads to consistently more accurate results. These conclusions hold
for foundation configurations with both vertical and inclined piles, though this latter
configuration leads to smaller deck displacements.

The study has been performed assuming a linear elastic behaviour for both the soil-
foundation system and the superstructure. Concerning the soil-foundation system, the
assumption of linearity is generally adopted dealing with SSI problems, justified by the
capacity design of foundations and the complexity of handling the complex frequency-
dependent nonlinear nature of soil. As for the superstructures, the assumption of linear-
ity is realistic for low and moderate intensity earthquakes while for high intensity events
plastic hinges at the piers base are expected to develop. Nevertheless, in the latter cases,
linear approaches may provide an estimate of the displacement demand of nonlinear
piers, according to the well-known equal energy and equal displacement rules [74]. It is
also important to highlight the fact that some of the conclusions can also change when
layered grounds are studied, as the appearance of cut-off frequencies will affect the ability
of both LPMs, but especially the simplified approach, to catch more intricate impedance
functions, and will also affect the influence of the adoption of one soil damping model or
the other. These aspects are tackled in next sections.
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Chapter 6

Benefits of inclined pile foundations
in earthquake resistant design of
bridges

6.1 Introduction

The beneficial effects of the use of inclined pile foundations on linear systems have
been already addressed and discussed in [94, 95], and briefly shown in Chapter 5 of this
dissertation. But, on the other hand, the effects of pile inclination on the ductility
demand of bridge piers have not been studied yet. This chapter focuses on its potential
benefits for the piers foundations of multi-span bridges in earthquake-prone areas. To this
end, a set of bridges characterized by different pier heights and span lengths are defined
together with their corresponding pile foundations. The structures are designed following
a displacement-based approach [111], and both linear and nonlinear behaviours are taken
into account assuming different target ductility demands. For each foundation, four
different pile rake angles are considered (including the vertical case), and the response
of all resulting configurations, each subject to a set of seven scaled real accelerograms,
is computed and analysed making use of a substructuring approach [58] and nonlinear
time-domain analysis. The nonlinear behaviour of the bridge piers is modelled using
both Takeda’s [112] and a bilinear model. On the other hand, the frequency-dependent
behaviour of the pile foundations is incorporated in the analysis by Lumped Parameter
Models (LPM) calibrated to reproduce impedance functions previously computed for
each specific case.

Results are presented in terms of ductility demand and energy dissipated by damping
or by yielding. The results suggest that inclined piles are clearly beneficial to the seismic
response of bridges, contributing to significantly reduce the ductility demand of piers
due to the particular kinematic seismic response of this type of foundations and the
associated reductions in the input seismic energy to the system.

Bridges characterised by different span lengths L (25, 50 and 75m) and piers heights
H (10, 15 and 30m) are assumed, covering a sufficiently wide scenario of aspect ratio
L/H , and the design is performed taking advantage of the above assumptions on the
deck restraints. In addition, bridges with both a ductile and non-ductile behaviour are
designed imposing the displacement ductility demand of piers through a displacement-
based design approach [111]. Finally, pile foundations are designed following standard
guidelines, taking into account design action effects at the base of each pier, evaluated



Depth

from

[m]
to

[m]
cs

[ms−1]
ρs

[tm−3]
Lithotype 1: 0.0 15.0 120.0 1.8

normally consolidated clay 15.0 30.0 180.0 1.8
Lithotype 2: 30.0 40.0 600.0 2.0

over consolidated clay 40.0 ∞ 800.0 2.0

Table 6.1: Soil profile and lithotypes.

according to hierarchy principles [113], and the site class.

6.2 Soil properties and seismic actions

A layered type D soil, representative of loose-to-medium cohesionless soil or predomi-
nantly soft-to-firm cohesive soil, according to EC8-1 [109], profile is considered in this
study. The soil is assumed to be constituted by two fundamental lithotypes, normally
and over consolidated (geological bedrock) clays characterized by the properties reported
in Table 6.1, with an ascending soil shear wave’s velocity cs from 120.0m/s to 800.0m/s.
A constant Poisson’s ratio νs = 0.4 is assumed for both lithotypes.

The seismic action is constituted by a set of seven scaled real accelerograms, cho-
sen from the Selected Input Motions for displacement-Based Assessment and Design
database, SIMBAD [122]. The records selection is based on the earthquake Magnitude
(5.0 <Mw< 7.3), the epicentral distance (0.0 < ∆ < 35.0 km) and the mean pseudo-
acceleration and displacement response spectra compatibility with the design ones, de-
fined according to the EC8–1 [109], for which a peak ground acceleration of 0.3375g
is expected on soil D at the life safety limit state. Compatibility of the mean pseudo-
acceleration and displacement response spectra with the code ones is assured within
the superstructures minimum and maximum fundamental periods, considering both the
elastic and the expected inelastic (i.e. effective) periods, resulting from the displacement-
based design procedure, as it will be briefly shown in the sequel. In detail, the mean
spectral ordinates result no lower than the 90% of the relevant ones of the code in the
range 0.71 <T< 5.00 s, corresponding to the minimum elastic and maximum effective
periods of the analysed bridges. Finally, in order to limit bias in the structural response
caused by the ground motion selection [126–128], earthquakes requiring small scale fac-
tors (1.00–1.35) are employed. The selected records are detailed in Table 6.2, whose
acceleration time histories are shown in Figure 6.1. The elastic response spectrum (in
terms of pseudo-acceleration and displacement) of each scaled record is compared with
the design spectra in Figure 6.2. In addition, the mean spectra of the selection are shown
with a continuous black line, while mean spectra plus and minus the standard deviation
are reported with dashed lines to provide a pictorial view of the scattering of spectral
ordinates.
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Earthquake

label

Name

WC–EC
Station ID

Date

[dd/mm/yy]
∆

[km]
Magnitude

[Mw]
PGA
[

ms−2
]

Scale

factor

E1
Gazli
440–86

KAR 17/05/1976 12.8 6.7
7.04
x-dir

1.25

E2
Gazli
440–86

KAR 17/05/1976 12.8 6.7
5.97
y-dir

1.05

E3
Imperial Valley

446–89
EC05 15/10/1979 27.7 6.5

5.09
y-dir

1.25

E4
Imperial Valley

447–89
EC06 15/10/1979 27.4 6.5

4.03
y-dir

1.00

E5
Loma Prieta

456–94
ST 58065 18/10/1989 27.6 6.9

3.18
x-dir

1.35

E6
Northridge
461–99

ST 24279 17/01/1994 20.3 6.7
5.78
y-dir

1.00

E7
Erzincan
465–78

ERZ 13/03/1992 8.97 6.6
4.86
x-dir

1.18

Table 6.2: Selected records for input motion (WC: Waveform Code, EC: Earthquake
Code, ∆: epicentral distance and PGA: Peak Ground Acceleration.) [122].

6.3 Decks design

Bridges with span lengths L of 25.0, 50.0 and 75.0m are considered and twin girders
steel-concrete composite decks with a slab width of 12.0m and thickness ranging between
25.0 and 35.0 cm (Figure 6.3a) are designed. Since, as already stated, decks are not
strongly involved in the seismic response of the bridges, a design for vertical loads is
performed considering two types of cross-sections, representative of hogging and sagging
deck regions (Figure 6.3b).

The steel beams height l2 is evaluated by assuming L/l2 = 26.0, while thicknesses of
webs as well as widths and thicknesses of bottom and top flanges are determined through
an elastic analysis of the most stressed cross-sections of the hogging and sagging regions,
assuming steel grade S355 for girders and concrete grade C25/30 for the slab. As for the
slab, typical longitudinal and transversal reinforcement ratios, corresponding to 1% and
2% for the sagging and hogging cross-sections, respectively, are assumed (Figure 6.3a).
For the sake of completeness, Table 6.3 shows bending moments obtained from the deck
analyses subjected to vertical loads (self-weight, moving and permanent loads), and the
girders plates dimensions of the hogging and sagging cross-sections relevant to the span
lengths of 25, 50 and 75m.

All permanent loads of each deck case are defined in Table 6.4, which not only include
girders carpentry weights but also the concrete slab and non–structural members self
weights; effective mass of the pier (half of the total mass) and that of the pier bent are
also taken into account.

6.4 Piers design

Piers of investigated bridges are designed to withstand the seismic action with both
a ductile and non-ductile behaviour, in order to evaluate effects of SSI on both linear
and nonlinear systems. Piers have been designed, in sufficient level of detail for the
present analysis, following the displacement-based seismic design method [111] depicted
in Section 4.2. Plastic hinges will appear at the pier base when an earthquake occurs,
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Figure 6.1: Time histories of the selected records (see Table 6.2).
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Figure 6.2: Elastic response spectrum of the selected earthquakes (see Table 6.2), in
terms of accelerations (top) and displacements (bottom).

so the pier nonlinear behaviour and a target ductility demand must be defined.

In details, piers with elastic behaviour (µ = 0.98) as well as piers with a displacement
expected ductility demand equal to 2.02 and 4.05 are designed, corresponding to piers
heights of 10, 15 and 30m, respectively. The latter are all combined with the three span
lengths, generating the nine analysis cases reported in Table 6.5. Each of the different
nine configurations will be identified through this section using the label defined in the
first row of Table 6.5. The design procedure is repeated to design all piers of the analysed
bridges, considering r.c. piers with circular cross-section of diameter D = 2.4m and as-
suming a concrete grade C35/45. Furthermore, reinforcements of steel grade B450C and
diameter of 40 and 22mm are used for the longitudinal and transverse reinforcements,
respectively. Table 6.5 reports details of the design procedure in addition to already de-
fined quantities, being NSd the design axial force, and MSd and MRd the design bending
moment and the bending moment resistance, respectively.

It is worth noting that the standard [113] requires a minimum longitudinal reinforce-
ment ratio of 1% and dictates increasing the design bending moment if the stability index
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Figure 6.3: (a) Decks cross-section (values in meters), (b) girders plates thicknesses and
dimensions (values in Table 6.3).

L
[m]

Mhogging

[MNm]
Msagging

[MNm]
l1
[m]

l2
[m]

l3
[m]

l4
[m]

eh1
[mm]

eh2
[mm]

eh3
[mm]

em1

[mm]
em2

[mm]
em3

[mm]

25.0 -10.7 7.2 6.25 1.0 0.6 0.6 50.0 50.0 15.0 20.0 30.0 10.0

50.0 -43.0 29.0 12.5 1.9 0.8 1.0 65.0 65.0 22.0 25.0 40.0 12.0

75.0 -98.4 66.1 18.75 2.9 1.0 1.2 85.0 85.0 30.0 35.0 55.0 15.0

Table 6.3: Bending moments due to self weights, and girders plates thicknesses and
dimensions (scheme in Figure 6.3b).

L
[m]

Metal

carpentry

[KN/m]

Concrete

slab

[KN/m]

Non–structural

members

[KN/m]

Total

[KN/m]

25.0 13.0 88.8 33.0 134.8
50.0 18.0 88.8 33.0 139.8
75.0 25.0 88.8 33.0 146.8

Table 6.4: Analysis of deck permanent loads due to self weights.
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Case label H10L25 H10L50 H10L75 H15L25 H15L50 H15L75 H30L25 H30L50 H30L75

H [m] 10.0 10.0 10.0 15.0 15.0 15.0 30.0 30.0 30.0

L [m] 25.0 50.0 75.0 25.0 50.0 75.0 25.0 50.0 75.0

D [m] 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4

NSd [MN] -5.16 -8.78 -12.80 -5.73 -9.35 -13.37 -7.43 -11.05 -15.06

∆y [m] 0.080 0.080 0.080 0.176 0.176 0.176 0.682 0.682 0.682

∆d [m] 0.325 0.325 0.325 0.355 0.355 0.355 0.670 0.670 0.670

µ 4.05 4.05 4.05 2.02 2.02 2.02 0.98 0.98 0.98

Stability index 0.064 0.098 0.127* 0.076 0.103* 0.100 0.177* 0.178* 0.167*

ξeq [%] 15.6 15.6 15.6 12.1 12.1 12.1 5.0 5.0 5.0

Teff [s] 2.78 2.78 2.78 2.78 2.78 2.78 5.00 5.00 5.00

MSd [MNm] 9.21 17.81 32.86 15.79 31.75 44.44 27.17 41.24 60.08

No. of long.

rebars
36 36 37 36 41 65 36 56 90

Long.

reinforc.

ratio

[%] 1.00** 1.00** 1.03 1.00** 1.14 1.81 1.00** 1.56 2.50

MRd [MNm] 26.25 29.26 32.88 26.74 32.33 47.56 28.19 41.56 60.46

Stirrups

spacing
[cm] 17.0 14.0 9.0 18.0 13.0 9.0 16.0 11.0 9.0

* MSd has been overestimated according to stability index higher than 0.1 [113].

** Minimum amount of reinforcement required by the standard [113].

Table 6.5: Definition of cases of studies, case labels and pier properties.

exceeds 0.1 in order to account for second order effects. It is worth mentioning that for
some investigated bridges, piers have been oversized to comply with code requirements,
with consequences on the relevant seismic behaviour with respect to the expected one.

6.5 Pile foundations design

Pile foundations are designed according to hierarchy principles, following indications
available in [113], relevant to structures designed through nonlinear analyses. A 2 × 2
square piles layout is considered for H = 10m bridges, while a 3 × 2 layout (with the
line of 3 piles oriented in the bridge transverse direction) is assumed for H = 15 and
H = 30m bridges. Piles diameter ∅p, length and spacing s are calculated for each
bridge with standard methodologies for cohesive soils. For soft normally consolidated
clay deposits, the undrained strength Cu is assumed to increase linearly with the vertical
lithostatic stress, while for the geological bedrock (constituted by over consolidated clay)
Cu = 600 kPa is considered. The actions at the base of piers result from the above
design methodology. Foundation parameters are summarized in Table 6.6. Piles Young’s
modulus Ep = 30.0GPa and density ρp = 2.5 t/m3 are considered, and different pile
rake angles θ are hypotheses to address the relevant contribution to the superstructure
response. In details, θ = 0◦ (vertical piles), 5◦, 10◦ and 15◦ are considered, according to
the layouts of Figure 4.2.
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Case label
NSd

[MN]
MRd

[MNm]
VRd

[MN]
Layout

∅p

[m]
s/∅p

Piles length

[m]

H10L25 -5.16 26.25 2.63 2× 2 1.2 3.0 31.0

H10L50 -8.78 29.26 2.93 2× 2 1.2 3.0 35.0

H10L75 -12.80 32.88 3.29 2× 2 1.2 3.0 45.0

H15L25 -5.73 26.74 1.78 3× 2 1.2 3.0 31.0

H15L50 -9.35 32.33 2.16 3× 2 1.2 3.0 35.0

H15L75 -13.37 47.56 3.17 3× 2 1.2 3.0 40.0

H30L25 -7.43 28.19 0.94 3× 2 1.5 3.0 32.0

H30L50 -11.05 41.56 1.39 3× 2 1.5 3.0 32.0

H30L75 -15.06 60.46 2.02 3× 2 1.5 3.0 40.0

Table 6.6: Design action effects at the foundation level and pile foundations dimensions.

H10L25 H10L50 H10L75 H15L25 H15L50 H15L75 H30L25 H30L50 H30L75

md [t] 343.5 712.5 1122.3 343.5 712.5 1122.3 343.5 712.5 1122.3

Id [tm2] 2906.4 6585.3 11933.3 2906.4 6585.3 11933.3 2906.4 6585.3 11933.3

hd [m] 0.97 1.53 2.08 0.97 1.53 2.08 0.97 1.53 2.08

mc [t] 88.3 88.3 88.3 88.3 88.3 88.3 88.3 88.3 88.3

Ic [tm2] 426.6 426.6 426.6 426.6 426.6 426.6 426.6 426.6 426.6

hc [m] 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80

mp [t] 94.5 94.5 94.5 152.18 152.18 152.18 325.1 325.1 325.1

hp [m] 8.20 8.20 8.20 13.20 13.20 13.20 28.20 28.20 28.20

mf [t] 78.4 78.4 78.4 257.6 257.6 257.6 503.1 503.1 503.1

If [tm2] 211.4 211.4 211.4 1902.8 1902.8 1902.8 5806.9 5806.9 5806.9

hf [m] 1.00 1.00 1.00 2.00 2.00 2.00 2.50 2.50 2.50

Tn [s] 0.71 0.96 1.18 1.27 1.62 1.75 3.69 4.13 4.29

T ∗

n [s] 1.08 1.20 1.28 1.62 1.73 1.83 4.28 4.56 4.74

Teff [s] 2.78 2.78 2.78 2.78 2.78 2.78 5.00 5.00 5.00

Table 6.7: Set of parameters defining the different FB and CB systems (see Figure 4.12)
used to model the superstructure considered for each case of analysis.

6.6 Results

Parameters of the structural models depicted in Figure 4.12 representative of all the
superstructures considered in this study are reported on Table 6.7. This table also
presents the natural Tn and effective Teff periods of each superstructure, together with the
natural period T ∗

n resulting from relaxing the requirement over minimum reinforcement
content and stability index established by [113].

6.6.1 Piers plastic hinge parameters

Final results of the moment-curvature relationship obtained with the CUMBIA soft-
ware [114] for all nine bridge piers, and using constitutive models of concrete and steel
reinforcement defined in Section 4.3, are shown in Figure 6.4 together with its relevant
elasto-plastic approximation. Equal scaling is applied in all sub-graphs, it is important
to notice how the reinforcement content increases the yield strength of the pier section
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Figure 6.4: Moment-curvature relationships of piers cross sections [114].

maintaining an almost identical yield curvature, though all piers have equal diameter
D = 2.4m (Table 6.5).

Table 6.8 summarises parameters of the constitutive bilinear moment-chord rota-
tion laws of the lumped plastic hinges for the backbone construction, identified through
the yielding My and ultimate Mu bending moments and the relevant yielding ϕSy and
ultimate ϕSu rotations. Data within parenthesis refers to analyses disregarding code
provisions concerning reinforcement detailing and stability issues. The hysteretic cyclic
behaviour of the plastic hinges is defined adopting different models, considering and dis-
regarding the stiffness degradation of reinforced concrete members due to cyclic loading.
The stiffness degradation effect is taken into account through the Takeda’s hysteresis
model [112], while by using the bilinear hysteresis model no degradation effect is taken
into account (Figure 6.5).

6.6.2 Impedance functions and kinematic interaction factors

Impedance functions and kinematic interaction factors of the pile foundations were com-
puted, for reference and for comparison, using two different frequency-domain models:
a) the Winkler-type model developed by Dezi et al. [9], and b) the BEM-FEM developed
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Case label
My

[MNm]
Mu

[MNm]
ϕSy

[rad]
ϕSu

[rad]

H10L25 27.77 (9.67) 28.44 (10.15) 0.0063 (0.0051) 0.0454 (0.0628)

H10L50 30.78 (17.98) 31.06 (18.19) 0.0064 (0.0058) 0.0429 (0.0565)

H10L75 34.23 (28.43) 35.20 (29.07) 0.0065 (0.0063) 0.0531 (0.0572)

H15L25 28.24 (16.61) 28.58 (16.84) 0.0095 (0.0091) 0.0549 (0.0745)

H15L50 33.98 (28.97) 34.25 (29.52) 0.0098 (0.0095) 0.0612 (0.0654)

H15L75 49.10 (44.05) 50.79 (45.15) 0.0103 (0.0101) 0.0635 (0.0654)

H30L25 29.67 (21.02) 29.99 (21.29) 0.0191 (0.0182) 0.1038 (0.1181)

H30L50 43.04 (34.04) 43.78 (34.61) 0.0202 (0.0195) 0.1077 (0.1166)

H30L75 62.30 (49.80) 64.39 (51.01) 0.0212 (0.0207) 0.1027 (0.1083)

Table 6.8: Parameters for the plastic hinge modelling. Data within parenthesis refers
to analyses disregarding code provisions concerning reinforcement detailing and stability
issues.

Figure 6.5: Hysteretic cyclic rules adopted to model the nonlinear response of the plastic
hinge.

by Padrón et al. [23] (see Section 4.6). Although some differences between models appear
in the mentioned functions, the differences observed later in terms of ductility demand
are remarkably negligible (see Section 6.6.3). The embedment of the pile cap has been
included in the BEM-FEM analyses for completeness, although its influence is expected
to be negligible. Figure 6.6 shows the discretization used for the soil.

Impedance functions obtained through the two models are shown in Figure 6.7.
Through the BEM-FEM, continuous lines, the stratified nature of the investigated soil
profile is clearly evident in the impedance functions through the cut-off frequencies that
can be observed in the damping functions, and the multiple resonance frequencies appear-
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Figure 6.6: Example of BEM discretization for the computation of impedance functions
and kinematic interaction factors (only a quarter of the geometry is shown).

ing in the stiffness functions in the frequency range 0− 2Hz. The last can’t be observed
in the Winkler-type model results, dashed lines, because it not considers the soil con-
tinuity. A significant increase in stiffness and damping capacity with number of piles
and pile diameter can also be observed. Although strong differences in the impedance
functions arise in the resonant peaks related with pile interaction for some terms, those
peaks appear beyond 10Hz, quite far from the maximum fundamental frequency over
the studied systems, 1.41Hz (for the H10L25 case in the elastic range). This is one of
the main reasons why soil-foundation-superstructure systems responses are not altered
in terms of ductility demand depending on the model used for computing impedance
functions.

Kinematic interaction factors obtained through the two models are shown in Fig-
ure 6.8. Strong differences in the comparison between the BEM-FEM and Winkler-type
model appear beyond 8Hz, continuous vs. dashed lines. It is important to notice that the
amount of energy of the ground motions is mainly concentrated in the frequency range
of 0 − 7Hz as shows the grey line in Figure 6.8. This line represents the normalized
mean Fourier amplitude spectrum of the selected ground motions. Being the differences
on the kinematic interaction factors between the two models almost negligible in the
0 − 7Hz frequency range, soil-foundation-superstructure systems responses in terms of
ductility demand are not altered depending on the model used for computing kinematic
interaction factors.

Impedance functions corresponding to all pile layouts are presented in Figures 6.9 and
6.10 (solid lines) obtained through the BEM-FEM or the Winkler model, respectively.
Also the kinematic interaction factors corresponding to all pile layouts are presented
in Figures 6.11 and 6.12. In both representations, the functions corresponding to the
different pile inclinations are presented in different columns. As expected, the horizon-
tal stiffness is shown to increase with rake angle while rocking stiffnesses decrease only
slightly with pile inclination. Regarding the kinematic interaction factors (see, e.g., Fig-
ure 6.11), translational factors tend to decrease with the rake angle, while rotation factors
experiment a significant increase. This induced rotation is responsible for structural anti-
phase displacements and accelerations, with respect to those induced by translation, and
its effects on linear systems have been already addressed and discussed in [94,95], and in
Chapter 5 of this dissertation. In order to help interpreting the relevance of the trends
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Figure 6.7: Computed impedance functions for vertical foundation layouts comparing
BEM-FEM and Winkler-type models.

shown in Figures 6.11 and 6.12, the normalized mean Fourier amplitude spectrum of
the selected ground motions (Table 6.2) is also included as a grey line in the first plot.
As stated before, it shows that the energy content of ground motions is mainly concen-
trated between 0 and 7 Hz, range within which the variations in the kinematic interaction
factors (and most importantly, the rotational factor) are not negligible.

For the study of the benefits of inclined pile foundations in earthquake resistant
design of bridges, the adopted LPM scheme is the one described in Section 4.9.2. LPM
impedances resulting from the fitting procedure are shown in dashed line in Figures 6.9
and 6.10 superposed to the BEM-FEM and Winkler impedances, respectively, for a
qualitative comparison. The fitting frequency range has been assumed to be 0–5Hz. The
latter is assumed to be sufficiently wide, given that the maximum fundamental frequency
of the investigated bridges (in the elastic range) is 1.41Hz (for the H10L25 case) and
that results achieved in [97], and presented in the previous chapter, demonstrate that
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Figure 6.8: Computed kinematic interaction factors for vertical foundation layouts com-
paring BEM-FEM and Winkler-type models (the gray line represents normalized mean
Fourier amplitude spectrum of the selected ground motions).

an optimization of impedance functions nearby the fundamental structural frequency is
sufficient to achieve accurate results for this type of structures. As shown in Figures 6.9
and 6.10, the derived LPMs are not able to reproduce exactly all the trends captured by
the original impedance functions. However, these differences will be shown to have no
impact whatsoever on the results of interest in this study (see Section 6.6.3).

6.6.3 Inelastic responses

In order to provide an idea of the structural responses computed through the presented
methodology, Figure 6.13 shows the time history of the pier bending moment (right) and
bending moment-chord rotation for the analysis case H15L50 (bridge with spans length
of 50m and piers height of 15m) subjected to input motion E7 (Table 6.2), considering
vertical (upper plots) or θ = 15◦ inclined (lower plots) piles. Results computed using
both Takeda’s and bilinear approaches for modelling the nonlinear response of the pier
hinge are shown together with the response obtained by assuming a linear model. The
lengthening of the system period with pier degradation using Takeda’s law becomes
evident from the comparison of the responses by the three models.

The target ductility used in the design is also represented in Figure 6.13, for reference,
with a circle. The ductility demand computed considering vertical piles and the Takeda’s
hysteretic rule coincides with the target ductility. On the contrary, in the configuration
employing inclined piles, the magnitude of the response is significantly smaller, with a
resulting ductility demand (µ = 1.35) much smaller than the target ductility (µ = 2.02).

In order to elucidate the differences in terms of the pier ductility demand depending
on the model used for representing the soil-foundation compliant behaviour, i.e. the
BEM-FEM or the Winkler-type model, ductilities have been computed through the
equal displacement rule [74] both in the frequency-domain for all superstructures and
input motions. The equal displacement rule assumes that the maximum displacement
of the elastoplastic system is equal to the maximum displacement of the corresponding
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Figure 6.9: Computed and fitted impedance functions for all foundations layouts.
Impedance functions computed through the BEM-FEM.
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Figure 6.10: Computed and fitted impedance functions for all foundations layouts.
Impedance functions computed through the Winkler model.
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Figure 6.11: Computed kinematic interaction factors of pile foundations (the gray line
represents normalized mean Fourier amplitude spectrum of the selected ground motions).
Kinematic interaction factors computed through the BEM-FEM.

Figure 6.12: Computed kinematic interaction factors of pile foundations (the gray line
represents normalized mean Fourier amplitude spectrum of the selected ground motions).
Kinematic interaction factors computed through the Winkler model.
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Figure 6.13: Hysteresis cycles and pier bending moment time histories for the H15L50
case (Table 6.5) with input motion E7 (Table 6.2).

Figure 6.14: Comparison between the ductility demands, computed through the equal
displacement rule in the frequency domain, and using the BEM-FEM or the Winkler-
type model for obtaining impedances and kinematic interaction factors. Vertical piles
cases.

linear system. Figure 6.14 presents the results for the vertical pile foundations; each
column corresponds to a different configuration and different colours are used for each
earthquake. As for the results scattering between the different seismic inputs, this is due
to the different spectral ordinates of signals, in conjunction with the natural period of
each superstructure (see Figure 6.2). It can be observed that ductility demands computed
from the impedances and kinematic interaction factors obtained from the two models,
i.e. BEM-FEM and Winkler-type, coincide for each signal.

At this point, it is important to remember that the nonlinear response of the sys-
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Figure 6.15: Comparison between the ductility demands, computed through the equal
displacement rule, obtained in the frequency domain using the original impedance func-
tions, and in the time domain using the LPM approximations. Vertical piles cases.

tem is evaluated through a substructuring approach in which the frequency-dependent
impedances of the foundations are incorporated using a simplified LPM. As discussed
in Section 4.9, such simplified LPMs are not able to capture all the intricacies of both
stiffness and damping functions (see, e.g., Figure 6.9). For instance, resonance peaks due
to the soil profile and to pile group effects are not correctly represented by the simplified
model, and even static stiffnesses are not always perfectly estimated. In the case of the
damping, the evolution of the function below the cut-off frequency is neither correctly
captured. These variations could imply the variable of interest in this study (ductility
demand) to be incorrectly computed, reason why validation of the proposed approach is
needed. To this end, ductility demands for all superstructures and input motions have
been computed through the equal displacement rule [74] both in the frequency-domain,
using the original impedance functions, and in the time-domain, using the derived LPM,
finding that the differences between the two approaches are negligible. Here, simulations
in time domain have been carried out through the central difference method in terms
of absolute values of displacements, velocities and accelerations instead of incremental
values more typical on Newmark’s integration schemes. To simulate in terms of abso-
lute values allows an easier control of the nonlinear behaviour. Figure 6.15 presents the
results for the vertical pile foundations; each column corresponds to a different config-
uration, and different colours are used for each earthquake. It can be observed that
ductility demands computed from the two approaches coincide for each signal. The loss
in accuracy in terms of the variable of interest, i.e. the ductility demand, is almost
negligible in all cases when computing in the time domain by using the adopted LPM.

6.6.4 Ductility demand

The ductility demands computed for all cases included in the study are shown in Fig-
ure 6.16. For each particular pier length-deck length configuration, results are presented
for both FB and CB assumptions and, in the latter case, for the different piles rake angles,
(θ = 0◦, 5◦, 10◦ and 15◦). Ductility demands obtained for each single input accelerogram
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Figure 6.16: Ductility demand of all simulated cases. (a) Piers designed according
to [111, 113].

are obtained using the equal displacement rule [74] (blue triangle), Takeda’s (red x) or
bilinear (green +) hysteretic rules; while the mean value over the seven accelerograms
is represented by a square. The scattering obtained between cases is due to the differ-
ences between elastic response spectra in the period range between the superstructure
fundamental period Tn and the effective period Teff (see Figure 6.2).

It is important to highlight that the ductility demands computed for many of the
configurations are significantly smaller than the target ductility (even in FB cases and in
configurations with vertical piles) because in most cases the reinforcement content has
been overestimated due to standard requirements [113], either because of high stability
indexes or because of the required minimum reinforcement ratio, corresponding to 1.0%,
as stated in Section 6.4. From an overall point of view, the increase in the number of
rebars leads to higher yield strength and hence to a lower ductility demand. If standard
requirements are not taken into consideration, and the guidelines of the displacement-
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Figure 6.17: Ductility demand of all simulated cases. Piers designed according to [111]
relaxing the restraints over minimum content of reinforcement and stability index [113].

based seismic design method are followed, results in terms of mean ductility demand
match better with the target ductility (see Figure 6.17).

As expected, the use of Takeda’s hysteretic rule leads, in general, to a better agree-
ment with the target ductility demand when compared to the bilinear law assumption.
In this sense, it is important to mention that the equivalent damping ratio ξeq adopted
for the piers design within the displacement-based procedure was calibrated for Takeda’s
type hysteretic model (see Section 4.2). The general tendency in the underestimation
of the ductility demand seen in Figures 6.16 and 6.17 when computed with a bilinear
law is due to a higher amount of energy absorbed by the hysteresis cycle. Also, it is
important to highlight the good estimations obtained following the equal displacement
rule through linear analyses.

The higher the rake angle, the smaller is the ductility demand. A drastic reduction
is observed for cases with the highest target ductility demand for rake angles of θ = 15◦:
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for instance, the mean ductility demand decreases from µ = 3.8 to µ = 2.0 (-47%) for
the H10L25 case when piers are designed according to displacement-based procedure
relaxing the standard restraints (Figure 6.17), and from µ = 1.9 to µ = 0.5 (-74%)
when the standard restraints are considered (Figure 6.16). On the other hand, in higher
piers with lower ductility demand, the reduction is much smaller, changing from a mean
value of µ = 1.1 to a mean value of µ = 1.0 (-9%) in the H30L50 case, for example,
when piers are designed according to displacement-based procedure relaxing the standard
constraints (Figure 6.17), and from µ = 1.0 to µ = 0.9 (-10%) when the restraints are
considered (Figure 6.16). The main cause of the reduction in the ductility demand is the
conjunction of lower translational FIM and larger anti-phase induced translations due
to rotations (see Figures 6.11 and 6.12) arising from the filtering action of the inclined
pile foundations.

These results show that SSI effects can have a very significant influence on the piers
ductility demand. However, standards usually recommend to include SSI effects in the
analyses only when the soil-foundation flexibility contributes significantly to the total
displacement at the top of the pier. For example, Eurocode 8–Part 2 [113] recommends
in Section 4.1.4.(2) to include SSI if its contribution in terms of displacement obtained
under the action of a unit horizontal load at the deck level is higher than 20%. Table 6.9
presents the percentage contribution due to the pier deflection ((hd + hc + hp)ϕS), the
foundation translation (uF ) and the foundation rotation ((hd + hc + hp + hf)ϕF ) to
the total displacement of the deck under a static force applied at the deck level. It is
shown that the contribution of the soil-foundation flexibility is larger than 20% only in
the H10L75 case, although the effect of SSI is quite significant in many of the rest of
configurations. Furthermore, inclined piles reduce the contribution of the soil-foundation
flexibility to the overall deck displacement, with respect to vertical piles, and their use
tend to reduce significantly the ductility demand.

6.6.5 Energy

Figure 6.18 shows a typical result obtained from the analyses in terms of the energy time
history for the H15L50 case with input motion E7, considering both vertical piles (upper
plots) and inclined piles with θ = 15◦ (lower plots). The first column presents the energy
terms computed assuming a linear-elastic system. The second and third columns, on the
other hand, present the energy terms corresponding to the nonlinear models in which
the response of the pier plastic hinge is modelled adopting either Takeda’s or the bilinear
hysteretic rules, respectively. The input energy to the system (Ein) is represented by
a black continuous line. As stated is Section 4.8.2, at each time step the input energy
is balanced by the sum of the recoverable kinetic energy (EI , blue continuous line),
the dissipated energy by damping (ED, orange continuous line), the recoverable strain
energy and, in the nonlinear cases, the dissipated energy by pier yielding (EK , magenta
continuous line). The dissipated energy by damping and the recoverable strain energy
are, at the same time, divided into the contributions of the superstructure or the soil-
foundation system (dotted and dashed lines respectively). As time goes to infinity,
the kinetic and the strain recoverable energies vanish, and all the input energy to the
system has been dissipated by viscous damping in the superstructure and soil-foundation
systems, and by yielding in the pier plastic hinge.

Important differences in the input energy, depending on whether inclined or vertical
pile foundations are considered, can be observed. Furthermore, slight differences in
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H10L25 H10L50 H10L75

θ 0◦ 5◦ 10◦ 15◦ 0◦ 5◦ 10◦ 15◦ 0◦ 5◦ 10◦ 15◦

hSϕS 88.9 90.6 91.7 92.2 83.3 85.8 87.3 88.0 77.8 80.8 82.7 83.5

uF 2.93 2.05 1.32 0.74 4.17 2.92 1.86 1.02 5.28 3.70 2.34 1.25

hFϕF 8.22 7.33 6.98 7.04 12.5 11.3 10.9 11.0 16.9 15.5 15.0 15.2

H15L25 H15L50 H15L75

θ 0◦ 5◦ 10◦ 15◦ 0◦ 5◦ 10◦ 15◦ 0◦ 5◦ 10◦ 15◦

hSϕS 96.3 96.9 97.2 97.4 94.2 95.1 95.6 95.7 92.1 93.2 93.9 94.1

uF 0.95 0.66 0.41 0.20 1.46 1.01 0.61 0.29 1.92 1.32 0.79 0.36

hFϕF 2.71 2.42 2.35 2.44 4.38 3.94 3.83 3.99 6.03 5.46 5.33 5.57

H30L25 H30L50 H30L75

θ 0◦ 5◦ 10◦ 15◦ 0◦ 5◦ 10◦ 15◦ 0◦ 5◦ 10◦ 15◦

hSϕS 99.1 99.3 99.3 99.3 98.7 98.9 99.0 98.9 98.2 98.5 98.6 98.5

uF 0.14 0.08 0.03 0.00 0.20 0.12 0.05 -0.01 0.27 0.16 0.06 -0.01

hFϕF 0.73 0.66 0.67 0.72 1.09 0.99 1.00 1.09 1.49 1.35 1.37 1.49

Table 6.9: Degrees of freedom contribution (in percentage) to the total displacement at
the deck (hS = hd + hc + hp, hF = hd + hc + hp + hf ), according to Eurocode 8–Part
2 [113].

the input energy can be observed depending on the model adopted (linear, Takeda’s
or bilinear). This is due to the fact that the input energy (Equation (4.10)) not only
depends on the input accelerations, üg and ϕ̈g, and the mass of the system, but also on
the velocities time histories, ϕ̇S, u̇F and ϕ̇F . When yielding occurs, part of the input
energy is now dissipated by yielding instead of by viscous damping. At the same time,
the higher effective periods imply smaller velocities in the system which, in turn, lead to
smaller values of the energy components associated to viscous damping.

Figure 6.19 shows the mean over the seven accelerograms of the different energy terms
at the end of the time history analyses in all structural cases relaxing the restraints over
minimum content of reinforcement and stability index in the piers [113]. The different
terms (EDsuper

(black), EDfound
(dark grey) and EKsuper

(light grey)) are represented with
stacked bar graphs that are grouped for FB or CB models, the latter presented separately
for the vertical or inclined piles. Within each group, results are also separated for the
Linear (L) models and for the nonlinear models assuming Takeda’s (T) or Bilinear (B)
behaviours. The sum of the quantities in each vertical bar equals the mean input energy
to the system (Ein) at the end of the time history analysis.

Generally, the energy dissipation through the foundation is relatively low (4.6% of the
input energy considering all CB systems). The input energy tends to increase with higher
span lengths because of the associated higher masses. For increasing pier heights, the
input energy is generally lower because of the lower velocities obtained in the system re-
sponse. When the system behaves nonlinearly, the input energy to the system decreases,
in almost all configurations, with respect to the linear-elastic case and, the higher the
target ductility demand (short pier cases), the smaller is the energy dissipated by viscous
damping in the superstructure, effect that is counteracted by the energy dissipation by
pier yielding.
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Figure 6.18: Time history of the energy terms for the H15L50 case with input motion
E7.

As pile rake angle increases, the system receives less seismic energy. Again, this effect
is more noticeable in the systems with highest ductility demand. The decrease in the
input energy redounds more to the decrease of the dissipation energy by pier yielding
than by viscous damping. The energy dissipated by pier yielding reduces drastically
in some cases, as can be observed, for example, in H10L75 case. In this configuration,
and considering for instance the model that assumes Takeda’s hysteretic rule, the input
energy to the system reduces by a significant 47% when inclined piles with θ = 15◦ are
assumed instead of vertical piles, with reductions of the energies dissipated by yielding
or by viscous damping of 53% and 31%, respectively.

6.7 Conclusions

SSI effects on the seismic design and response of bridges founded on piles in soft soils
have been investigated focusing on the role of pile inclination. Bridges with expected
linear and nonlinear behaviours have been designed according to a displacement-based
approach, making use of bridge-deck-pier subsystems representative of the whole struc-
tural behaviour and assuming a FB hypothesis. Bridges with different piers heights
and span lengths are included in the investigation. The SSI contribution to the seismic
structural response has been studied in the spirit of the substructure approach through
nonlinear dynamic time history analyses considering a set of suitably selected real ac-
celerograms.

Even in cases of complex soil profiles as the one considered in this study, the adopted
low-order LPM is able to represent the frequency-dependent impedance functions of the
different soil-foundation systems with enough accuracy when used to compute ductility
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Figure 6.19: Mean over the 7 accelerograms of the energy balances at the end of the
time history analyses for all structural cases. L: linear, T: Takeda’s constitutive law, B:
bilinear constitutive law.

demands and energy balances, even though such LPM is not able to reproduce all the
intricacies of the impedance functions of the configurations considered in the analysis. In
this regards, it has also being found that impedance functions and kinematic interaction
factors computed through either a Winkler-type model or a coupled BEM-FEM model
leads to virtually identical results.

Takeda’s model is used to represent the nonlinear response of the hinge developed at
the pier’s base. However, for the cases studied herein, it is shown that a good estimation
of the ductility demand can also be obtained through a linear equivalent simulation
adopting the equal displacement rule while a good estimation of ductility demand and
energy dissipation by yielding can be obtained adopting a simple bilinear hysteresis law.

Strong variations in the inelastic response are obtained depending on the records used
in the simulations, as previously observed, for instance, by Elnashai and McClure [88].
This leads to a strong scattering in the results in some cases. In this regard, a set of
properly scaled records was proposed.

Disregarding SSI and referring to FB systems, if the seismic detailing prescribed by
modern codes (e.g. Eurocode 8 [72,109,113]) is guaranteed, the actual structural response
may differ sensibly from the expected one, driven by the design methodology, for all cases
in which greater amounts of reinforcements are needed to comply with standards.

Concerning SSI effects, the following main conclusions can be drawn:
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• Despite only one particular case fall within conditions defined by Eurocode 8 for
which SSI analyses are mandatory, the compliance of soil-foundation systems with
inclined piles affect sensibly the bridge response in all cases.

• Foundations with inclined piles promote a less pronounced nonlinear behaviour of
the superstructure and the ductility demand of piers reduces by increasing the pile
inclination.

• The last can be explained by the peculiarities of the FIM of inclined pile founda-
tions, characterised by rotations inducing anti-phase displacements in the super-
structure with respect to the translational component of the motion, which are
responsible for reductions in the seismic energy that enters the system and must
be dissipated through viscous damping or yielding.

• The application of displacement-based design methodologies to bridges founded on
inclined piles in soft soils requires the definition of a suitable strategy to account
for the soil-foundation compliance in the design methodology.

Provided that a proper design is performed, accounting for the peculiar resisting
mechanisms of inclined pile foundations, the latter appear beneficial for the bridge seismic
response since, from an overall point of view, they are responsible for a reduction of the
plastic rotation demand of piers hinges.
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Chapter 7

General conclusions and future
research directions

7.1 Summary and conclusions

This dissertation proposes new ideas for the nonlinear modelling of structures where
SSI plays a significant role. The document, being divided into two parts, is a faithful
reflection of how the research process has been carried out along these last years.

In the Part I of the document, an equivalent linear model for estimating the dynamic
horizontal response of piles considering soil degradation along the soil-pile interface has
been presented, implemented and calibrated. The formulation proposed herein incorpo-
rates the possibility of modelling an imperfect or damaged soil-pile interface along which
bonded contact conditions no longer apply. The proposal has been based on a coupled
BEM-FEM approach, uniting the advantages of both methods: the piles are modelled as
beam with finite elements; the degraded or imperfect pile-soil interface is represented by
distributed springs and dashpots whose properties vary with depth; and the soil beyond
the degraded interface is modelled by boundary elements.

The proposed coupled BEM-FEM formulation is not only computationally more ef-
ficient, but it is also more versatile, and requires much less work in mesh generation if
compared with other models available in the literature. This will now allow to study
more complex problems. The efficiency of the model will also allow to perform paramet-
ric analyses or be incorporated in processes that require a large number of evaluations,
such as in many optimization techniques.

Part II studies the seismic response of bridge piers founded on pile groups. For
the nonlinear modelling of the piers, it is necessary to simulate the response of the
system in the time domain. The soil-foundation system usually has a strong frequency-
dependent character, changing its behaviour depending on the oscillation frequency of
the bridge. This hinders the dynamic analysis in the time domain. Among the different
alternatives existent in the literature for the dynamic analysis in time domain with
frequency-dependent reaction forces, two possible methodologies are commonly used,
the convolution integration of the frequency-dependent reaction forces, or the use of
equivalent discrete physical models, also known as LPM [130]. There also exist hybrid
time domain – frequency domain methodologies. Here, two LPM alternatives have been
studied and implemented. By adopting a substructuring scheme, the soil-foundation
system is substituted by a frequency-independent combination of masses, springs and
dashpots that reproduce its complex behaviour. This way, when an earthquake occurs,



the degradation on the bridge piers can be evaluated depending on the foundation design.
Both implemented LPMs have shown to have its own advantages and disadvantages.

The implementation of the one labelled as “consistent” is more complicated than the
other labelled as “simplified”, but the consistent is able to fit more intricate patters of
the impedance functions of the foundation. On the other hand, if only the fitting of a
short frequency range is needed, as in the study case tackled here, this simplified LPM
is a sufficiently accurate option. Furthermore, through the parametric analyses carried
out, it has been shown that there are other modelling assumptions that have a higher
influence in the system response. For example, the traditionally assumed non-causal, and
hence non-realistic, hysteretic damping model for the material damping of the soil media
leads to an overestimation of the foundation resistant forces if compared with the causal
Biot’s damping model. Differences in the response due to assumed damping models have
been shown to be higher than differences due to the LPM used. However, it is worth
noting that, in the present dissertation, superstructures are modelled as one degree-of-
freedom systems, and are characterized by their fundamental frequency. For other types
of superstructures, better characterized as multi degree-of-freedom systems, the more
elaborate consistent LPM would possibly be needed in order to represent correctly the
contribution of all vibration modes, so the simplest approaches would probably not be
suitable.

On the other hand, and also in the Part II of the dissertation, the SSI effects on
the seismic design, response and damage of bridges founded on piles in soft soils have
been investigated focusing on the role of pile inclination. The nonlinear Takeda’s and
bilinear models have been used to represent the hinge developed at the pier’s base.
Through the substructuring scheme, the adopted low-order simplified LPM is shown
to be able to represent the frequency-dependent impedance functions of the different
soil-foundation systems with enough accuracy when used to compute ductility demands
and energy balances, even though such LPM is not able to reproduce all the intricacies
of the impedance functions of the configurations considered in the analysis. In this
regards, it has also being found that impedance functions and kinematic interaction
factors computed through either a Winkler-type model or a coupled BEM-FEM model
leads to virtually identical results. Also, for the cases studied herein, it is shown that a
good estimation of piers ductility demands can be obtained through a linear equivalent
simulation adopting the equal displacement rule while a good estimation of ductility
demand and energy dissipation by yielding can be obtained adopting a simple bilinear
hysteresis law.

Finally, regarding the influence of pile inclination on the seismic response of the
bridges, the compliance of soil-foundation systems with inclined piles reveals to affect
sensibly the bridge response in all cases. This is so even when only one of the studied
cases falls within conditions defined by Eurocode 8 for which SSI analyses are manda-
tory. Therefore, the application of displacement-based design methodologies to bridges
founded on inclined piles in soft soils requires the definition of a suitable strategy to
account for the soil-foundation compliance in the design methodology.

7.2 Future research directions

Regarding the equivalent linear model presented in Part I for estimating the dynamic
horizontal response of piles considering soil degradation along the soil-pile interface,
some issues have to be developed yet. Once the formulation has been verified for the
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lateral analysis of a single pile case, it can now be extended to model pile groups, as the
boundary element approach used to model the soil allows to take rigorously into account
pile-soil-pile interaction effects. It can also be calibrated for the longitudinal analyses and
generalized to raked piles. The model can be used to obtain results for substructuring
analyses, or can incorporate the superstructure or other elements for direct analyses of
complete soil-foundation-superstructure systems. At the same time, the definition of the
properties of distributed stiffness and damping along the interface could also incorporate
more complex models of soil degradation depending for instance on shear strain levels,
such as those cited in the literature review (Section 1.3.1).

Thanks to the soil degradation curves (see for instance Figure 2.1), a soil shear
modulus in the degraded domain can be stated depending on the induced soil shear strain
levels. In this sense, it would be necessary to adopt an iterative procedure introducing on
each iteration the shear moduli that agrees with the strain levels at each depth obtained
in the previous iteration. When no variation is obtained in the soil shear modulus, the
iterative procedure concludes. At the end, the resistant forces of the foundation are
obtained consistently with the induced load levels. It would be needed to analyse the
proper methodological tools for this particular case.

The model has been verified by comparison against numerical results obtained from
a more rigorous model, but due to time constraints, it has not been yet validated against
empirical results for specific cases of interest. For the same reason, the comparison of
results obtained with the model against other nonlinear models for the computation
of soil-pile foundations systems accounting for soil and interface nonlinearities has not
been yet carried out. There exist relevant experimental results that could be of interest,
including full scale and centrifuge experiments. In the following, as a proposal for the
future research directions, an overview of some of those experimental test results is
presented.

Experimental tests presented by Goit and Saitoh [14,34], and by Goit et al. [32,33,35],
are a priori, the more tempting ones because they show the results in terms of impedance
functions and kinematic interaction factors of piles and group of piles. Through the
experimental analyses presented in [14], a nonlinear behaviour is shown in the impedance
functions of inclined single piles. Different values of the resistant forces are obtained
when loading or unloading due to the different path evolution of contact gaps when the
piles are inclined. In [33], the effects of soil nonlinearity on the active lengths of piles is
studied. They analyse the displacement field of the soil surrounding the piles for different
load levels, and how the active length of piles varies. Similarly to [14] for the single pile
experiments, in [34] the analysis of nonlinearities in fixed-head inclined pile groups is
shown. The resonant peaks of the impedance functions increase as the excitation load
amplitude increases, denoting a strong nonlinear behaviour. In [35], the experimental
tests show that not only a degraded soil domain surrounding each pile exist, but also a
wider degraded soil domain enclosing all the pile groups would appear when the piles
are so close between them, or the excitation load is so high.

Centrifuge tests, on the other hand, are extremely valuable in geotechnics due to
the possibility of obtaining in the scaled model states of stress equivalent to those de-
veloped in the full-scale case. This aspect is very important when nonlinearities in the
problem might be relevant, as it is the case of pile foundations subjected to large seis-
mic excitations that could generate nonlinear responses of the soil or along the pile-soil
interface. For this reason, comparison against centrifuge results of the seismic response
of pile foundations would be of great interest in order to understand the validity of the
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proposed assumptions, calibrate the model, set ranges of applicability or propose modi-
fications to the model. Some papers of interest in this regard are those of Li et al. [37]
and Hussien et al. [38]. Li et al. [37] use a shaking table inside a centrifuge machine for
the analysis of vertical and batter pile foundations under earthquake excitations. On
the other hand, Hussien et al. [38] perform kinematic and inertial interaction analysis of
soil-pile-structure systems by using a strong container, i.e. with rigid lateral boundaries.
The reproduction of those cases using the model proposed herein is expected to be very
useful for further development and calibration of the model, even though the task is not
straightforward due to the complexity of the set-ups and the input signals employed by
the authors.

There also exist the alternative of reproducing full-scale experiment results. For
example, El-Marsafawi et al. [146] obtained, through field experiments, the vertical har-
monic response of two pile groups varying the excitation amplitude. Then, those results
were compared against the linear ones published by Kaynia and Kausel [147], and also to
the simulated with the DINA3 computer program of Novak et al. [148] which includes the
cylindrical annular degraded zone formulation firstly proposed by Novak and Sheta [53].
Future research would compare again the experimental results but with the new tool
presented herein. Some concerns arise about the experimental tests because, in many
cases, the experimental results for the lower level of excitation magnitude don’t agree
with the widely adopted linear model of Kaynia and Kausel. More recently, Banna and
Bayda analysed the vertical vibration response of single piles [29,149], and later, Biswas
et al. [31] their horizontal-rocking coupled response. The obtained experimental results
for the different excitations levels are presented observing a clear nonlinear behaviour. A
comparison against FEM analyses is carried out in their study where some discrepancies
can be seen in some cases. Also, the equivalent linear annular degraded zone model of
Novak and Sheta [53] is used in some of these studies [29,31]. It includes a cylindrical soil
boundary zone around the pile with lesser soil shear modulus and higher soil damping
in comparison with the outer soil zone.

Finally, the study of the bending moments and shear strain variations along the piles
as the soil degrades is another field to be explored with the model proposed herein.
Also variations in the seismic envelopes due to the soil interface degradation would be
analysed with the proposed model.

For the analysis of the seismic response of bridge piers tackled in Part II, the two
typologies of LPM implemented have allowed the analyses of piers damage incorporating
the effects of SSI. Those implemented LPM can be used to study the dynamic response,
in time domain, of other types of structures. They are intended to be incorporated in
dedicated software widely extended in the technical and scientific community.

On the other hand, some simplifying hypotheses have been assumed for the linear
and nonlinear analyses of viaducts. First, an intermediate single pier has been assumed
to be representative of the dynamic behaviour of an entire viaduct. This consideration
is only valid for some situations where all piers have the same height. Second, the
consideration of only a transversal seismic excitation might be a strong limitation. And
third, three degrees of freedom have been assumed to be enough for the superstructure
modelling. Complete models of all the viaduct will show contribution of higher modes
than the fundamental one. Other pier typologies can be introduced to the model, where
the plastic hinges not necessarily evolve at the pier base, and the assumption of a lumped
spring and damper at the pier base would not be valid. If this is the case, more complex
models would be necessary for taking into account the behaviour of the pier.
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Chapter 7. General conclusions and future research directions

Now, all the knowledge collected thanks to the analysed case can be used for the
study of complete bridge structures. Different damage mechanisms would appear when
considering other bridge typologies and also considering all the system in the simulations,
and the conclusions derived from this research would not be valid in that cases.

The study of the CB system of the bridge piers has focused on the superstructure
response and on the damage produced on bridge piers depending on the design consider-
ations in the soil-foundation, as for example the different pile group layouts considered
and the piles inclination. Some of the design considerations that have shown to be ben-
eficial for the superstructure, could be detrimental for the soil-pile system. The stress
supported by the piles, for example in terms of bending moments and shear forces, and
the loads transmitted to the soil domain, should be explored in the future in order to
understand the possible consequences that the use of inclined piles might have on the
foundation system.

In Part I of this research, a model that considers soil degradation in the interface
between piles and soil has been developed; and in Part II, the pier damage evaluation
of viaducts taking into account SSI has been carried out. Finally, the effects of soil
degradation on the nonlinear response of bridge piers can be evaluated using the model
developed in Part I and the substructuring scheme proposed in Part II. For sure many
issues will appear, so novel strategies will be needed to overcome the different limitations.
For instance, as the impedance functions of the pile foundation systems depend on the
induced load levels, further developments on the LPMs are needed for including the load
level as a parameter.
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Appendix A

Kinematic interaction factors, and
computed and fitted impedance
functions of the soil-foundations
systems used in Chapter 5

In this appendix, the kinematic interaction factors, the impedance functions and the
resulting fittings of the impedance functions, either through the simplified LPM or the
consistent LPM with N = 2, related to all the soil-foundations systems used in Chapter 5
are presented. Such soil-foundation system configurations resulted from the combination
of two different ground types, D and C, with cs = 117.1m/s and cs = 253.5m/s, respec-
tively, and six different layouts of piles that constitute the foundation: 2 × 2 and 3 × 3
vertical piles groups with diameter d = 1.0 m, pile length L = 20.0 m, and three different
pile-to-pile spacings s (3, 5 and 7 m). Inclined piles were also considered in the analyses
of the 2×2 foundations, with rake angles θ of 5◦ and 10◦. The rest of parameters needed
for the computation of the soil-pile foundation impedances and kinematic interaction
factors are shown in Chapter 5.

In the fitting procedure of the impedance functions, the weight functions shown in
Equations (5.3a) and (5.3b) have been used for the consistent and simplified LPM cases,
respectively.



A.1 Kinematic interaction factors
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Figure A.1: Kinematic interaction factors of the vertical 2×2, s = 3m foundation layout
in ground type D.
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Figure A.2: Kinematic interaction factors of the vertical 2×2, s = 5m foundation layout
in ground type D.
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Figure A.3: Kinematic interaction factors of the vertical 2×2, s = 7m foundation layout
in ground type D.
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Figure A.4: Kinematic interaction factors of the vertical 3×3, s = 3m foundation layout
in ground type D.
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Figure A.5: Kinematic interaction factors of the vertical 3×3, s = 5m foundation layout
in ground type D.
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Figure A.6: Kinematic interaction factors of the vertical 3×3, s = 7m foundation layout
in ground type D.
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Figure A.7: Kinematic interaction factors of the θ = 5◦ inclined 2×2, s = 3m foundation
layout in ground type D.
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Figure A.8: Kinematic interaction factors of the θ = 5◦ inclined 2×2, s = 5m foundation
layout in ground type D.
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Figure A.9: Kinematic interaction factors of the θ = 5◦ inclined 2×2, s = 7m foundation
layout in ground type D.
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Figure A.10: Kinematic interaction factors of the θ = 10◦ inclined 2×2, s = 3m founda-
tion layout in ground type D.
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Figure A.11: Kinematic interaction factors of the θ = 10◦ inclined 2×2, s = 5m founda-
tion layout in ground type D.
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Figure A.12: Kinematic interaction factors of the θ = 10◦ inclined 2×2, s = 7m founda-
tion layout in ground type D.
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Figure A.13: Kinematic interaction factors of the vertical 2×2, s = 3m foundation layout
in ground type C.

0.8

0.9

1

Hysteretic

Biot 0

0.1

0.2

0 5 10 15 20

0

10

20
10

-3

0 5 10 15 20

-4

-2

0

10
-3

Figure A.14: Kinematic interaction factors of the vertical 2×2, s = 5m foundation layout
in ground type C.
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Figure A.15: Kinematic interaction factors of the vertical 2×2, s = 7m foundation layout
in ground type C.
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Figure A.16: Kinematic interaction factors of the vertical 3×3, s = 3m foundation layout
in ground type C.
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Figure A.17: Kinematic interaction factors of the vertical 3×3, s = 5m foundation layout
in ground type C.
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Figure A.18: Kinematic interaction factors of the vertical 3×3, s = 7m foundation layout
in ground type C.
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Figure A.19: Kinematic interaction factors of the θ = 5◦ inclined 2×2, s = 3m founda-
tion layout in ground type C.
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Figure A.20: Kinematic interaction factors of the θ = 5◦ inclined 2×2, s = 5m founda-
tion layout in ground type C.
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Figure A.21: Kinematic interaction factors of the θ = 5◦ inclined 2×2, s = 7m founda-
tion layout in ground type C.
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Figure A.22: Kinematic interaction factors of the θ = 10◦ inclined 2×2, s = 3m founda-
tion layout in ground type C.
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Figure A.23: Kinematic interaction factors of the θ = 10◦ inclined 2×2, s = 5m founda-
tion layout in ground type C.
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Figure A.24: Kinematic interaction factors of the θ = 10◦ inclined 2×2, s = 7m founda-
tion layout in ground type C.

A.2 Impedance functions and LPM fitting results

Figure A.25: Computed and fitted impedance functions of the vertical 2×2, s = 3m
foundation layout in ground type D.
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Figure A.26: Computed and fitted impedance functions of the vertical 2×2, s = 5m
foundation layout in ground type D.

Figure A.27: Computed and fitted impedance functions of the vertical 2×2, s = 7m
foundation layout in ground type D.
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Figure A.28: Computed and fitted impedance functions of the vertical 3×3, s = 3m
foundation layout in ground type D.

Figure A.29: Computed and fitted impedance functions of the vertical 3×3, s = 5m
foundation layout in ground type D.
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Figure A.30: Computed and fitted impedance functions of the vertical 3×3, s = 7m
foundation layout in ground type D.

Figure A.31: Computed and fitted impedance functions of the θ = 5◦ inclined 2×2,
s = 3m foundation layout in ground type D.
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Figure A.32: Computed and fitted impedance functions of the θ = 5◦ inclined 2×2,
s = 5m foundation layout in ground type D.

Figure A.33: Computed and fitted impedance functions of the θ = 5◦ inclined 2×2,
s = 7m foundation layout in ground type D.
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Figure A.34: Computed and fitted impedance functions of the θ = 10◦ inclined 2×2,
s = 3m foundation layout in ground type D.

Figure A.35: Computed and fitted impedance functions of the θ = 10◦ inclined 2×2,
s = 5m foundation layout in ground type D.
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Figure A.36: Computed and fitted impedance functions of the θ = 10◦ inclined 2×2,
s = 7m foundation layout in ground type D.

Figure A.37: Computed and fitted impedance functions of the vertical 2×2, s = 3m
foundation layout in ground type C.
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Figure A.38: Computed and fitted impedance functions of the vertical 2×2, s = 5m
foundation layout in ground type C.

Figure A.39: Computed and fitted impedance functions of the vertical 2×2, s = 7m
foundation layout in ground type C.
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Figure A.40: Computed and fitted impedance functions of the vertical 3×3, s = 3m
foundation layout in ground type C.

Figure A.41: Computed and fitted impedance functions of the vertical 3×3, s = 5m
foundation layout in ground type C.
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Figure A.42: Computed and fitted impedance functions of the vertical 3×3, s = 7m
foundation layout in ground type C.

Figure A.43: Computed and fitted impedance functions of the θ = 5◦ inclined 2×2,
s = 3m foundation layout in ground type C.
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Figure A.44: Computed and fitted impedance functions of the θ = 5◦ inclined 2×2,
s = 5m foundation layout in ground type C.

Figure A.45: Computed and fitted impedance functions of the θ = 5◦ inclined 2×2,
s = 7m foundation layout in ground type C.
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Figure A.46: Computed and fitted impedance functions of the θ = 10◦ inclined 2×2,
s = 3m foundation layout in ground type C.

Figure A.47: Computed and fitted impedance functions of the θ = 10◦ inclined 2×2,
s = 5m foundation layout in ground type C.
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Figure A.48: Computed and fitted impedance functions of the θ = 10◦ inclined 2×2,
s = 7m foundation layout in ground type C.
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Appendix B

Summary in Spanish / Resumen en
castellano

T́ıtulo de la Tesis Doctoral: Desarrollo de

modelos numéricos para el análisis de

comportamientos no lineales en problemas dinámicos

de interacción suelo-estructura1

B.1 Motivación y antecedentes

Si bien es verdad que hoy en d́ıa existe un conocimiento considerable en el ámbito de
la ingenieŕıa śısmica, el hecho es que los terremotos siguen causando la muerte a al
menos cientos de personas cada año, incluso decenas de miles en años concretos [1].
Por si fuera poco, el daño causado en áreas urbanas, ciudades e infraestructuras civiles
suele ser devastador. Como en cualquier situación catastrófica, no todas las regiones
del planeta tienen la misma capacidad de reponerse. Es por ello que es completamente
necesario y esencial el desarrollo de nuevas técnicas más baratas para el diseño y cálculo
de estructuras resistentes a terremotos.

Para hacer esto, es muy común en ingenieŕıa la resolución de problemas dinámicos
que involucren la propagación de ondas mecánicas a través de un medio continuo. El
análisis de la respuesta de estructuras o componentes mecánicos a cargas variables en
el tiempo, como es un terremoto, requiere altos niveles de precision en la búsqueda de
diseños más seguros y optimizados. Esto se ha convertido en un problema bastante
común, no siendo abordado unicamente por grandes estudios y empresas de ingenieŕıa.

La forma en la que las propiedades y el movimiento del suelo influencian la respuesta
de una estructura y, a su vez, la forma en la que el movimiento de la estructura influencia
la respuesta del suelo, comúnmente se denomina interacción suelo-estructura (SSI de sus
siglas en inglés Soil-Structure Interaction). Este concepto se refiere a fenómenos tanto
estáticos como dinámicos mediados por un suelo flexible y una estructura más ŕıgida

1En este apéndice se presenta un breve resumen en castellano de la Tesis Doctoral de entre 5 y
20 páginas, en el que se incluyen los objetivos y las conclusiones, de acuerdo con el Art́ıculo 10 del
Reglamento de Estudios de Doctorado de la Universidad de Las Palmas de Gran Canaria (BOULPGC
de 4 de marzo de 2019).



que el suelo. Frecuentemente, los cálculos estructurales omiten la SSI dando lugar a
diseños demasiado conservadores. Sin embargo, como se ha mostrado en el desarrollo
de este documento, SSI puede mostrar efectos perjudiciales en la respuesta del sistema
en algunos casos en concreto. La literatura muestra una multitud de evidencias sobre la
existencia de escenarios donde la SSI debe ser tenida en cuenta. Cuando una estructura
se encuentra parcialmente incrustada en el suelo, y cuando la categoŕıa del suelo es
blanda, SSI se convierte en un fenómeno decisivo. En estos casos, el diseño adecuado
de la cimentación juega un papel clave, pudiendo mitigar los efectos perjudiciales a la
estructura.

Esta tesis se centra en el caso particular de cimentaciones pilotadas, y aborda difer-
entes problemas que tienen en cuenta la respuesta dinámica y śısmica de pilotes y es-
tructuras pilotadas. Por tanto, estos problemas incluyen el análisis de la SSI dinámica,
y además, fenómenos no lineales que se desarrollan tanto en sistemas pilote-suelo como
en las superestructuras. Más concretamente, en una parte del documento se propone un
modelo lineal equivalente de elementos finitos y elementos de contorno acoplado (BEM-
FEM) para el análisis de la respuesta dinámica de cimentaciones pilotadas que considera
degradación del suelo en la interfase entre pilote y suelo. La otra parte del documento
estudia diferentes formas de construir un modelo numérico para el análisis de la respuesta
śısmica de viaductos pilotados. Haciendo uso de este modelo se estudia la influencia de
varios aspectos, como puede ser, por ejemplo, la reducción en el daño a los pilares cuando
se utilizan pilotes inclinados en la cimentación.

Los códigos desarrollados para el análisis del sistema suelo-cimentación son verifi-
cados a través de dar resultado a problemas ya conocidos, y también a otros casos
cuya solución es desconocida donde se compara con el resultado proporcionado por
otros códigos disponibles en el grupo de investigación. Una calibración cuidadosa de
los parámetros del modelo es necesaria para garantizar la estabilidad y la precisión en
los resultados. Los correspondientes estudios paramétricos son llevados a cabo dependi-
endo de las caracteŕısticas de la estructura, el tipo de carga y la naturaleza no lineal del
problema.

El doctorando ha estado adscrito al Instituto Universitario de Sistemas inteligentes
y Aplicaciones Numéricas en Ingenieŕıa (SIANI), más concretamente en la División de
Mecánica de los Medios Continuos y Estructuras. El instituto SIANI ha estado activo
desde hace ya dos décadas, proporcionando toda la infraestructura necesaria, incluyendo
un centro de procesamiento de datos de alto rendimiento que alberga un cluster de
propósito general. El instituto se encuentra situado en el edificio central del Parque
Cient́ıfico y Tecnológico de la Universidad de Las Palmas de Gran Canaria.

El grupo de investigación en el que se integra el doctorando ha trabajado desde
hace más de tres décadas en el desarrollo de modelos de elementos finitos y elementos
de contorno para el análisis dinámico de problemas de mecánica estructural. En los
problemas abordados por el grupo, los fenómenos de SSI han sido clave, pero siempre
se han realizado los análisis en el régimen lineal de su comportamiento. Es por ello,
que en los años recientes, la contribución realizada en forma de modelos y códigos de
ordenador en esta materia es considerable, aśı como también el análisis en profundidad
de problemas de interés, como pueden ser el análisis de la respuesta śısmica de presas,
estructuras enterradas y estructuras de construcción cimentadas sobre pilotes.
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B.2 Objetivos

Los análisis lineales pueden ser los adecuados en muchos casos, en cambio, en muchos
otros, es necesario usar modelos capaces de incorporar ciertos fenómenos no lineales. El
objetivo de esta Tesis es avanzar en el modelado numérico de no linealidades en prob-
lemas dinámicos de SSI, y también ha tenido el propósito de avanzar el desarrollo de
los códigos existentes en el seno del Grupo de Investigación incluyendo estas formula-
ciones que permiten abordar problemas con comportamiento no lineal en el ámbito de la
SSI dinámica. Los modelos resultantes permiten un análisis más realista de problemas
prácticos.

Esta tesis tiene, como primer objetivo, la formulación e implementación de un mod-
elo de elementos finitos y elementos de contorno acoplado para el análisis dinámico de
cimentaciones pilotadas que exhiban un comportamiento no lineal en el contacto entre
pilote y suelo. Se tiene en cuenta, a través de un modelo lineal equivalente, la degradación
del suelo alrededor de los pilotes.

El segundo objetivo es el desarrollo de una herramienta para el análisis del compor-
tamiento no lineal de estructuras teniendo en cuenta la SSI dinámica y la dependencia
en frecuencia de las fuerzas de reacción del sistema suelo-cimentación.

Para alcanzar estos objetivos generales, una secuencia de objetivos parciales han
tenido que ser completados:

• Desarrollo de un modelo BEM-FEM lineal equivalente para el análisis aproximado
de la respuesta armónica lateral de pilotes considerando degradación del suelo a lo
largo de la interfase entre pilote y suelo.

• Estudio de las bases teóricas de los modelos de parámetros agrupados (LPMs de
sus siglas en inglés, Lumped Parameter Models), e implementación de un esquema
paso-a-paso lineal para el estudio de estructuras cimentadas sobre pilotes.

• Estudio de los criterios de selección y tratamiento de señales śısmicas.

• Análisis de la influencia del tipo de modelo de amortiguamiento para el medio
material del suelo en la respuesta de la superestructura.

• Análisis de la influencia del tipo de LPM en la respuesta de la superestructura.

• Implementación de la regla de comportamiento no lineal asociada a la supere-
structura objeto de estudio, i.e. pilares de puente. Desarrollo de los esquemas de
subestructuración para el análisis de su respuesta.

• Análisis de la influencia de los efectos de la SSI en la respuesta dinámica no lineal
de puentes pilotados y viaductos.

• Evaluación de la reducción del daño śısmico en viaductos cuando se utilizan pilotes
inclinados en la cimentación.

B.3 Estructura del documento

El fenómeno de SSI puede ser tenido en cuenta adoptando un esquema de subestruc-
turación. De esta forma se puede estudiar el sistema suelo-cimentación y la superestruc-
tura separadamente. Tradicionalmente, los efectos no lineales que se pueden apreciar
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en la respuesta del sistema han sido clasificados en tres categoŕıas, comportamientos no
lineales del material, no linealidades geométricas principalmente debidas a grandes de-
formaciones, y condiciones de contorno no lineales. Un comportamiento no lineal puede
aparecer tanto en el sistema suelo-cimentación y/o en la superestructura. El documento
de tesis ha sido estructurado en dos partes, una centrada en el desarrollo de un modelo
lineal equivalente del sistema suelo-cimentación, y el otro centrado en la respuesta no
lineal de superestructuras teniendo en cuenta efectos de SSI.

En cuanto al sistema suelo-cimentación, en la Parte I del documento un modelo
numérico es desarrollado con el objetivo de reproducir el comportamiento dinámico de la
cimentación pilotada. El modelo incluye la posibilidad de reproducir efectos no lineales
debido a fallos de contacto y plastificación del suelo en la interfase entre pilote y suelo
a través de consideraciones lineales equivalentes. En primer lugar, en el Caṕıtulo 2, el
problema que se aborda es definido, para luego describir el modelo BEM-FEM acoplado.
Las ecuaciones BEM que gobiernan el dominio constituido por el suelo son resumidas al
principio, justo después de haber descrito la discretización adoptada para los contornos
del suelo e interfases del mismo, y para los pilotes. Las ecuaciones FEM que gobiernan el
comportamiento dinámico de los pilotes son entonces descritas en detalle. Finalmente, la
sección donde se describe el modelado concluye con la implementación de las ecuaciones
lineales equivalentes de acoplamiento que unen los pilotes con el suelo.

En el segundo caṕıtulo de la Parte I, i.e. Caṕıtulo 3, el modelo es calibrado para
diferentes niveles de degradación del suelo en su comportamiento lateral. Para hacer
esto, se ha usado un BEM multidominio de forma que el dominio degradado se en-
cuentra expĺıcitamente incluido en las simulaciones. Las bases del BEM multidominio
son brevemente presentadas al principio de la sección. Después de que la calibración
del BEM-FEM haya sido realizada a través de funciones de impedancia horizontal del
sistema suelo-cimentación, se muestra la verificación del amortiguamiento del dominio
degradado y también del uso de distintas formas de dominio degradado. Una porción
significante del contenido de la Parte I está incluida en un art́ıculo cient́ıfico ya enviado
para su publicación [96].

La Parte II del documento se centra en la respuesta śısmica de pilares de puentes
cimentados sobre grupos de pilotes. Esta parte comienza, en el Caṕıtulo 4, con la
definición del problema, la descripción de las bases del procedimiento de diseño adop-
tado, y la descripción de la metodoloǵıa empleada para el computo de la respuesta del
sistema. Luego, el caṕıtulo continúa con la descripción del esquema de subestructuración
adoptado y los modelos utilizados para caracterizar el comportamiento del sistema suelo-
cimentación. Más adelante, el modelo no lineal asumido para los pilares de puente es
descrito, junto con los dos LPMs adoptados, i.e. los que en el documento se denominan
como “consistent” y “simplified”.

La influencia en la computación de la respuesta śısmica de pilares de puentes cimen-
tados sobre grupos de pilotes dependiendo del modelo asumido para el amortiguamiento
material del suelo es presentada en el Caṕıtulo 5. También, el tipo de LPM adoptado
para reproducir el comportamiento dinámico complejo de las fuerzas de reacción de la
cimentación, necesario para la ejecución de análisis en el dominio del tiempo, es estu-
diado en términos de la respuesta del pilar de puente. Un amplio estudio paramétrico
implicando diferentes perfiles de suelo y superestructuras es llevado a cabo para estar en
disposición de proporcionar conclusiones generales. Este análisis se realiza en un marco
lineal elástico de forma que las conclusiones obtenidas de este estudio proporcionan un
buen punto de partida para el estudio del caso no lineal.
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Siguiendo las conclusiones generadas a través de los análisis en el rango lineal, el
análisis de la respuesta no lineal de pilares de puente es mostrado en el Caṕıtulo 6.
Principalmente, los efectos beneficiosos del uso de pilotes inclinados en la cimentación,
en términos de la reducción del daño śısmico producido a los pilares, son mostrados.
Concretamente, los resultados se presentan en términos de la demanda dúctil y de la
enerǵıa disipada por amortiguamiento o por plastificación. Una porción significante del
contenido de la Parte II ya ha sido publicada [97], o es parte de un art́ıculo cient́ıfico ya
aceptado para su publicación [98].

Finalmente, un resumen de los logros más destacados y las conclusiones más impor-
tantes que se han obtenido gracias a este trabajo son presentados en el Caṕıtulo 7. El
documento termina discutiendo las posibles direcciones y desarrollos para investigaciones
futuras que siguiesen este trabajo.

B.4 Trabajos publicados que se derivan de esta Tesis

El trabajo realizado a lo largo de esta tesis doctoral ha contribuido a varias publicaciones
y comunicaciones a congresos. Los mismos se encuentran detallados a continuación.

B.4.1 Contribución a revistas JCR

• F González, LA Padrón, S Carbonari, M Morici, JJ Aznárez, F Dezi, and G Leoni.
Seismic response of bridge piers on pile groups for different soil damping models
and lumped parameter representations of the foundation. Earthquake Engineering
& Structural Dynamics, 48(3):306–327, 2019. [97]

• F González, S Carbonari, LA Padrón, M Morici, JJ Aznárez, F Dezi, O Maeso,
and G Leoni. Benefits of inclined pile foundations in earthquake resistant design
of bridges. Enviado a Engineering Structures, aceptado. [98]

• F González, LA Padrón, JJ Aznárez and O Maeso. Equivalent linear model for the
lateral dynamic analysis of pile foundations considering pile-soil interface degrada-
tion. Enviado a Engineering Analysis with Boundary Elements, en revisión. [96]

B.4.2 Contribución a conferencias

• F González, LA Padrón, JJ Aznárez, and O Maeso. Implementation of the consis-
tent lumped-parameter model for the computation of the seismic response of non-
linear piled structures. En Actas de la 10a Conferencia Internacional de Dinámica
Estructural (EURODYN 2017). Roma, Italia, 10–13 septiembre 2017. [99]

• F González, M Morici, S Carbonari, F Dezi, MC Capatti, G Leoni, LA Padrón,
JJ Aznárez, and O Maeso. Lumped Parameter Models for time domain Soil-
Structure Interaction analysis: consistent vs. simplified formulations and effects
on the superstructure response. En Actas del 5o Taller Internacional de Interacción
Dinámica entre Suelo y Estructura (DISS 17). Roma, Italia, 19–20 octubre 2017.
[100]
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B.5 Resumen y conclusiones

Este documento propone nuevas ideas para el modelado de no linealidades en estruc-
turas donde los fenómenos de SSI juegan un papel significativo. El documento, estando
dividido en dos partes, es un fiel reflejo de como se ha llevado el proceso de investigación
a lo largo de estos últimos años.

En la Parte I del documento, un modelo lineal equivalente para estimar la respuesta
horizontal dinámica de pilotes considerando degradación del suelo a lo largo de la inter-
fase pilote-suelo ha sido presentado, implementado y calibrado. La formulación prop-
uesta incorpora la posibilidad de modelar una interfase pilote-suelo imperfecta o dañada
en donde las condiciones de contacto no están garantizadas. Se ha utilizado un modelo
BEM-FEM acoplado, que reúne las ventajas de ambos métodos: los pilotes son mode-
lados con elementos finitos tipo viga, el suelo degradado en la interfase pilote-suelo es
representado resortes y amortiguadores repartidos a lo largo de ella cuyas propiedades
vaŕıan con la profundidad, y el suelo más allá de la interfaz degradada es modelado a
través de elementos de contorno.

La formulación del modelo acoplado BEM-FEM no solo es computacionalmente más
eficiente, sino que también es más versátil y requiere mucho menos tiempo en generar las
mallas si lo comparamos con otros modelos existentes en la literatura. Esto permitirá
ahora el estudio de problemas más complejos. La eficiencia del modelo permitirá también
realizar análisis paramétricos o ser incorporado en procesos que requieran un gran número
de evaluaciones, como ocurren en muchos problemas de optimización.

La Parte II estudia la respuesta śısmica de pilares de puente cimentados sobre gru-
pos de pilotes. Para el modelado no lineal de pilares, es necesario simular la respuesta
del sistema en el dominio del tiempo. Usualmente, el comportamiento del sistema
suelo-cimentación tiene una marcada dependencia en frecuencia, cambiando su com-
portamiento dependiendo de la frecuencia de oscilación del puente. Esto entorpece el
análisis dinámico en el dominio del tiempo. De entre las distintas alternativas que ex-
isten en la bibliograf́ıa para el análisis dinámico en el dominio del tiempo que tengan
que hacer uso de fuerzas de reacción dependientes de la frecuencia, dos metodoloǵıas son
ampliamente utilizadas, una de ellas consiste en hacer uso de la integral de convolución
para estas reacciones, y la otra mediante el uso de modelos de elementos discretos equiv-
alentes, también denominados LPM [130]. También existen metodoloǵıas h́ıbridas que
mezclan el dominio del tiempo con el dominio de la frecuencia. Aqúı, dos alternativas
de LPM han sido estudiadas e implementadas. Haciendo uso de un esquema de sube-
structuración, el sistema suelo-cimentación es sustituido por una combinación de masas,
resortes y amortiguadores cuyos valores son independientes de la frecuencia y reproducen
el comportamiento complejo de la cimentación. De esta forma, cuando ocurre un ter-
remoto, la degradación en el puente puede ser evaluada dependiendo del diseño de la
cimentación.

Ambos LPMs implementados han mostrado tener sus propias ventajas e inconve-
nientes. La implementación del aqúı denominado como “consistent” es más complicada
y laboriosa que el otro denominado como “simplified”, pero el consistent es capaz de
ajustar curvas de impedancia de la cimentación con formas más intrincadas. Por otro
lado, si unicamente es necesario el ajuste de un rango de frecuencias pequeño, como es el
caso tratado en esta investigación, el simplified es una opción lo suficientemente precisa.
Además, a través del estudio paramétrico realizado, se ha mostrado que existen otras
suposiciones del modelado que tienen una influencia mayor en la respuesta śısmica del
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sistema. Por ejemplo, el modelo histerético no causal, y por lo tanto no realista, que
tradicionalmente se ha supuesto en la bibliograf́ıa para el amortiguamiento material del
suelo, hace que se sobrestimen las fuerzas reactivas de la cimentación si es comparado
con otro modelo para el amortiguamiento material del suelo como es el modelo causal
de Biot. Se ha observado que las diferencias en la respuesta debidas al modelo de amor-
tiguamiento utilizado son mayores que las debidas al LPM elegido. Sin embargo, vale la
pena hacer notar que, en la presente investigación las superestructuras son modeladas
utilizando un único grado de libertad, estando caracterizadas por su frecuencia funda-
mental. Para otros tipos de superestructuras, para las que es necesario considerar un
sistema de múltiples grados de libertad, el más elaborado consistent LPM posiblemente
sea el necesario para reproducir correctamente la contribución de los distintos modos de
vibración, por lo que la opción simplificada probablemente no sea la adecuada.

Por otro lado, y también en la Parte II del documento, los efectos de SSI en el
diseño śısmico, la respuesta y el daño de puentes cimentados sobre pilotes en suelos
blandos han sido investigados atendiendo al papel que juega la inclinación de los pilotes.
Los modelos de comportamiento no lineales de Takeda y bilineal han sido usados para
representar las fisuras desarrolladas en la base de los pilares. A través del esquema
de subestructuración, el LPM de bajo orden simplified adoptado muestra ser capaz de
representar con suficiente precisión la dependencia en frecuencia de las funciones de
impedancia de los distintos sistemas suelo-cimentación adoptados cuando es utilizado
para computar la demanda dúctil y los balances de enerǵıa, incluso sabiendo que este
tipo de LPM no es capaz de reproducir todas las formas intrincadas de las funciones
de impedancia. En este sentido, también se ha visto que las funciones de impedancia
y los factores de interacción cinemática computados tanto con el modelo tipo Winkler
como con el modelo acoplado BEM-FEM dan lugar a idénticos resultados. También,
para los casos estudiados aqúı, se ha visto que se puede obtener una buena estimación
de las demandas dúctiles de los pilares a través de simulaciones lineales equivalentes
adoptando la regla de igual desplazamiento, mientras que una buena estimación de la
demanda dúctil y la enerǵıa disipada por la plastificación puede ser obtenida a través de
una simple ley de comportamiento bilineal.

Finalmente, en relación a la influencia de la inclinación de los pilotes en la respuesta
śısmica de pilares, el comportamiento del sistema suelo-cimentación con pilotes inclina-
dos afecta sensiblemente la respuesta del puente en todos los casos. Esto se produce
aún habiendo unicamente un caso de todos los estudiados para el cual es obligatorio el
análisis considerando SSI siguiendo los criterios definidos en el Eurocódigo 8. Además,
la utilización de la metodoloǵıa de diseño basada en desplazamiento para los puentes ci-
mentados sobre pilotes inclinados en suelos blandos requiere que se defina una estrategia
apropiada para tener en cuenta la flexibilidad y filtrado de la señal śısmica del sistema
suelo-cimentación.

B.6 Ĺıneas futuras de investigación

Respecto al modelo lineal equivalente expuesto en la Parte I para estimar la respuesta
horizontal dinámica de pilotes considerando degradación del suelo a lo largo de la inter-
fase pilote-suelo, algunos aspectos tienen que ser desarrollados todav́ıa. Una vez que la
formulación ha sido verificada para el análisis lateral de un pilote simple, ahora puede
ser extendida al modelado de grupos de pilotes ya que el enfoque utilizado por medio
de elementos de contorno para el modelado del suelo permite tener en cuenta de forma
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rigurosa los efectos de interacción pilote-suelo-pilote. También puede ser calibrado para
análisis longitudinales y generalizado a pilotes inclinados. El modelo puede ser usado
para obtener resultados a través de análisis por subestructuración, o puede incorporar la
superestructura y otros elementos para realizar análisis directos de sistemas completos
suelo-cimentación-superestructura. Al mismo tiempo, la definición de las propiedades
de la rigidez y amortiguamiento distribuidos a lo largo de la interfase podŕıa incorporar
también modelos más complejos de la degradación del suelo dependiendo, por ejem-
plo, de los niveles de deformación, como aquellos citados en la revisión bibliográfica
(Sección 1.3.1).

Gracias a las curvas de degradación del suelo (mirar por ejemplo la Figura 2.1), se
puede definir un módulo de rigidez del suelo en su dominio degradado dependiendo de los
niveles inducidos de deformación a cortante. En este sentido, podŕıa ser necesario adoptar
un procedimiento iterativo para el cual en cada iteración se introduciŕıa el módulo de
rigidez que concuerda con el nivel de deformación en la iteración anterior para cada
profundidad de la interfase. En el momento en el que no se obtenga variación en el modulo
de rigidez, el proceso iterativo concluye. Al final, las fuerzas reactivas de la cimentación
son obtenidas consecuentemente con los niveles de carga inducidos. Es posible que sea
necesario analizar cuales seŕıan las herramientas metodológicas necesarias para este caso
particular.

El modelo ha sido verificado comparándolo contra resultados numéricos obtenidos
por medio de un modelo más riguroso, pero debido a limitaciones de tiempo, todav́ıa no
ha sido validado contra resultados emṕıricos para los casos espećıficos de interés. Por
esta misma razón, la comparación de resultados obtenidos con el modelo contra otros
modelos no lineales para el computo de sistemas suelo-cimentación que tengan en cuenta
no linealidades en la interfase todav́ıa no se ha llevado a cabo. Existen resultados experi-
mentales relacionados que podŕıan ser de gran interés, en los que se incluyen experimentos
a escala real o por medio de máquina centŕıfuga. A continuación, como propuesta de
ĺıneas futuras de investigación, una visión conjunta de estos ensayos experimentales es
comentada.

Los resultados experimentales presentados por Goit y Saitoh [14, 34], y por Goit
et al. [32, 33, 35], son a priori, los más atractivos porque presentan los resultados en
términos de funciones de impedancia y factores de interacción cinemática de pilotes y
grupos de pilotes. A través de los análisis experimentales presentados en [14], se aprecia
un comportamiento no lineal en las funciones de impedancia de pilotes simples inclinados.
Son obtenidos distintos valores de las fuerzas reactivas cuando se cargan y se descargan
los pilotes ya que se desarrollan distintos caminos en los huecos y fallos al contacto entre
pilote y suelo debido a la inclinación de los pilotes. En [33], los efectos de la no linealidad
del suelo en los cambios de la longitud activa de los pilotes son estudiados. Analizan el
campo de desplazamientos del suelo en las proximidades al pilote para distintos niveles de
carga, y como es la variación de la longitud activa de los pilotes. De forma similar a [14]
para el caso de pilotes simples, en [34] el análisis de no linealidades de grupos de pilotes
inclinados unidos por medio de un encepado ŕıgido es mostrado. Los picos de resonancia
que se aprecian en las funciones de impedancia aumentan a medida que la amplitud de
la fuerza de excitación se incrementa, mostrando un fuerte carácter no lineal. En [35],
los ensayos experimentales muestran no solo que existe un dominio degradado alrededor
de cada pilote, sino que también podŕıa aparecer un dominio de suelo degradado aún
mayor que encierra a todo el grupo de pilotes en los caso en que los pilotes estén muy
cerca unos de otros, o que la fuerza de excitación sea muy grande.
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Los ensayos en máquina centŕıfuga, por otro lado, tienen un importante valor en
geotecnia debido a la posibilidad de obtener en modelos a escala niveles de tensión
equivalentes a aquellos que se pueden desarrollar en su correspondiente caso a escala
real. Este aspecto es muy importante cuando las no linealidades en el problema pueden
ser relevantes, como es el caso de cimentaciones pilotadas sometidas a fuertes excitaciones
śısmicas que pueden generar respuestas no lineales del suelo o a lo largo de la interfase
pilote-suelo. Por esta razón, comparar el modelo desarrollado contra resultados de la
respuesta śısmica de cimentaciones pilotadas obtenidos a través de máquina centŕıfuga
seŕıa de gran interés para entender la validez de las suposiciones consideradas, calibrar
el modelo, establecer los rangos de aplicabilidad o proponer modificaciones al modelo.
Algunos art́ıculos de interés relacionados con este tipo de pruebas experimentales son
aquellos de Li et al. [37] y Hussien et al. [38]. Li et al. [37] utilizan una mesa de
vibraciones dentro de una máquina centrifuga para el análisis de pilotes verticales e
inclinados sometidos a excitaciones śısmicas. Por otro lado, Hussien et al. [38] realizan
análisis de interacción cinemática e inercial de sistemas suelo-pilote-estructura haciendo
uso de una caja de contornos ŕıgidos. La reproducción de esos casos con el modelo
desarrollado en esta tesis se espera que sea muy útil para continuar su desarrollo y
calibración, incluso sabiendo que la tarea no se presupone que sea directa debido a la
complejidad de la disposición y de las señales de entrada usadas por los autores.

También existe la alternativa de reproducir resultados obtenidos por medio de ex-
perimentos a escala real. Por ejemplo, El-Marsafawi et al. [146] obtuvieron, a través de
experimentos de campo, la respuesta vertical armónica de dos grupos de pilotes variando
la amplitud de la excitación. Luego, estos resultados fueron comparados contra los resul-
tados publicados por Kaynia y Kausel [147] donde se asume un comportamiento lineal de
todos los medios implicados. También fueron comparados contra los resultados obtenidos
haciendo uso del programa DINA3 de Novak et al. [148] que incluye en su formulación
la zona anular ciĺındrica degradada primeramente propuesta por Novak and Sheta [53].
Investigaciones futuras podŕıan comparar nuevamente estos resultados experimentales
pero contra esta nueva herramienta que se ha presentado en este documento. Algunas
preocupaciones sobre estos resultados experimentales podŕıan aparecer puesto que, en
muchos casos, para los niveles más bajos de la magnitud de la excitación no concuerdan
con los proporcionados por el ampliamente extendido modelo de Kaynia y Kausel. Más
recientemente, Banna y Bayda analizaron la vibración vertical de pilotes simples [29,149],
y luego, Biswas et al. [31] su respuesta horizontal acoplada con la rotación. Los resultados
experimentales obtenidos para las distintas magnitudes de la excitación son presentados,
observándose un comportamiento no lineal evidente. Realizan una comparación contra
análisis FEM donde se observan algunas discrepancias en algunos casos. También, el
modelo lineal equivalente que incluye el dominio anular degradado de Novak y Sheta [53]
es utilizado en algunos de esos estudios [29,31]. Este cilindro de suelo que rodea al pilote
tiene un módulo de rigidez inferior y un amortiguamiento material superior a los del
dominio exterior correspondiente al suelo no degradado.

Finalmente, el estudio de como variaŕıan los momentos flectores y esfuerzos a cortante
a lo largo de los pilotes a medida que el suelo se degrada es otro aspecto a explorar
haciendo uso del modelo propuesto. También las variaciones en la envolventes śısmicas
debidas a la degradación de la interfase pilote-suelo podŕıan ser analizadas.

Para el análisis de la respuesta śısmica de los pilares de puente abordados en la
Parte II, las dos tipoloǵıas de LPM implementadas han permitido los análisis sobre el
daño en los pilares incorporando los efectos de SSI. Estos LPM implementados pueden
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ser usados ahora para estudiar la respuesta dinámica, en el dominio del tiempo, de otros
tipos de estructuras. También, podŕıa contemplarse la posibilidad de estudiar como
seŕıa incorporarlos en paquetes informáticos ampliamente utilizados y extendidos en la
comunidad técnica y cient́ıfica.

Por otro lado, algunas hipótesis simplificadoras han sido asumidas tanto en los análisis
lineales como no lineales. Primero, un pilar intermedio ha sido considerado como rep-
resentativo del comportamiento dinámico del viaducto completo. Esta consideración es
válida únicamente para algunas situaciones donde todos los pilares tienen la misma al-
tura. Segundo, el hecho de considerar únicamente la excitación transversal podŕıa ser una
limitación bastante fuerte. Y tercero, se ha considerado que un sistema de tres grados
de libertad es suficiente para el modelado de la superestructura. Modelos más complejos
que incluyan el viaducto completo mostrarán contribuciones de otros modos, no solo del
modo fundamental. Otras tipoloǵıas de pilares pueden ser introducidas al modelo, en
donde la plastificación no se produzca necesariamente en la base de los pilares, por lo
tanto, la consideración en el modelo de que un resorte y un amortiguador en la base
del pilar es representativa del comportamiento no lineal del mismo no seŕıa válida. Si
este fuera el caso, otros modelos seŕıan necesarios para reproducir el comportamiento del
pilar.

Ahora, todo el conocimiento recabado gracias a los análisis llevados a cabo en esta
investigación puede ser utilizado para estudiar estructuras completas de puentes. Dis-
tintos mecanismos de daño aparecerán cuando se consideren otras tipoloǵıas de puentes
y también considerando todo el sistema en las simulaciones. Las conclusiones que se
derivan de esta tesis podŕıan no ser validas en estos casos.

El estudio en base flexible de los pilares de puentes se ha centrado en la respuesta
de la superestructura y en el daño producido a los pilares dependiendo de las consid-
eraciones de diseño en la cimentación, como por ejemplo las distintas configuraciones
de pilotes e inclinación de los mismos en los grupos de pilotes. Algunas de las consid-
eraciones de diseño que han mostrado ser beneficiosas para la superestructura, podŕıan
ser perjudiciales para el sistema suelo-cimentación. Las tensiones soportadas por los
pilotes, por ejemplo en términos de momentos flectores y esfuerzos a cortante, y las car-
gas trasmitidas al suelo, debeŕıan ser exploradas en el futuro para poder dilucidar las
posibles consecuencias que el uso de pilotes inclinados pueden tener en la cimentación.

En la Parte I de esta investigación, un modelo que considera degradación del suelo
en la interfase entre pilote y suelo ha sido desarrollado; y en la Parte II, el daño en
pilares de viaductos es evaluado teniendo en cuenta los efectos de SSI. Finalmente, los
efectos de la degradación del suelo en la respuesta no lineal de pilares de puente pueden
ser estudiados utilizando el modelo desarrollado en la Parte I y el esquema de sube-
structuración propuesto en la Parte II. Seguramente aparecerán muchos inconvenientes
que imposibiliten estos análisis, es por lo que serán necesarias estrategias novedosas que
solventen las distintas limitaciones. Por ejemplo, como las funciones de impedancia de
las cimentaciones pilotadas dependen de la magnitud de la carga inducida, será necesario
un desarrollo de los LPMs utilizados para que sean capaces de incluir la magnitud de la
carga como parámetro.
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[92] Medina C, Padrón LA, Aznárez JJ, Santana A, and Maeso O. Kinematic inter-
action factors of deep foundations with inclined piles. Earthquake Engineering &
Structural Dynamics, 43(13):2035–2050, 2014.

[93] Gerolymos N, Giannakou A, Anastasopoulos I, and Gazetas G. Evidence of benefi-
cial role of inclined piles: observations and summary of numerical analyses. Bulletin
of Earthquake Engineering, 6(4):705–722, 2008.
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