

Ingeniería Industrial

PROYECTO FINAL DE CARRERA

FORMULACIÓN Y CALIBRACIÓN DE UN MODELO PARAMÉTRICO DE INTERACCIÓN SUELO-ESTRUCTURA SIMPLIFICADO PARA EL ANÁLISIS DE LA RESPUESTA DINÁMICA DE ESTRUCTURAS ENTERRADAS

AUTOR: MARÍA CASTRO FERNÁNDEZ

TUTOR: JUAN JOSÉ AZNÁREZ GONZÁLEZ

TUTOR: JACOB DAVID RODRÍGUEZ BORDÓN

DIVISIÓN DE MECÁNICA DE LOS MEDIOS CONTINUOS Y ESTRUCTURAS

AGRADECIMIENTOS

ł.

Este trabajo ha sido posible gracias a la financiación obtenida del Ministerio de Economía y Competitividad (MINECO) y el Fondo Europeo de Desarrollo Regional (FEDER) a través del Proyecto de Investigación BIA2014-57640-R.

Así, quiero agradecer a los miembros del SIANI en general y a los miembros de la División de Mecánica de los Medios Continuos y Estructuras en particular, por permitirme compartir con ellos ésta experiencia, haciendome sentir *una más del grupo*.

A mis tutores, Juan José Aznárez González y Jacob David Rodríguez Bordón, por ser tan buenos profesionales como personas. Por inspirarme.

A Guillermo Álamo Meneses y Francisco González Pérez, también, por sus consejos y buen humor. Por su ayuda.

A mi familia por su apoyo imprescindible, tanto en lo personal como en lo económico. Especialmente a mi abuela, con el "bendito 5", y a mi abuelo, que tanto me entendía.

A mis amigos y pareja, por serlo siempre, en mis buenas y en mis malas. Por apoyarme cuando más lo he necesitado.

A todos les digo: **mil gracias**, porque me hacen entender lo que es *ir a hombros de gigantes*.

Ш

ÍNDICE DE CONTENIDOS

Pr	sentación del documento	IX
1.	ntroducción .1. Sumario	1 1 1 2
2.	Formulación del modelo 2.1. Definición del problema 2.1.1. Ecuación de comportamiento del pilote 2.1.2. Condiciones de contorno 2.1.3. Excitación 2.1.4. Interacción suelo-estructura 2.2. Formulación de la ecuación general de gobierno 2.3. Resolución analítica 2.4. Variables de salida del modelo	3 4 9 10 18 20 25
3.	/erificación del modelo 8.1. Modelo de referencia: BEM-BEM	27 27 30
4.	mplementación 4.1. Modelo de referencia BEM-BEM 4.2. Modelo analítico, error y optimización 4.2.1. Minimización por barrido 4.2.2. Minimización usando fmincon	33 33 34 35 36
5.	Resultados 5.1. Casos estudiados: configuraciones físicas 5.2. Respuesta de los modelos Winkler y Pasternak 5.2.1. Dependiendo de la frecuencia 5.2.2. Dependiendo de la configuración física 5.2.3. Dependiendo de la variable a optimizar 5.3.1. Relación con S _P 5.3.2. Dependiendo de la frecuencia 5.3.3. Dependiendo de la frecuencia 5.3.4. Dependiendo de la variable a optimizar	37 38 38 38 41 41 41 45 45 45
	5.4.1. Dependiendo de la frecuencia	50 50

	A. Código MatLab generado 55												
Ref	erencias												58
6.	Conclusiones 6.1. Sobre el modelo analítico propuesto 6.2. Líneas futuras			•	•	 		•	•	•			55 55 56
	5.4.2. Dependiendo de la variable a optimizar5.4.3. Dependiendo de la configuración física	•	 	•		 	•	•	•	•	•	 •	51 51

ÍNDICE DE FIGURAS

2.1.	Deformación de viga Euler-Bernoulli	4
2.2.	Equilibrio en el elemento diferencial de viga Euler-Bernoulli	5
2.3.	Deformación de viga Timoshenko	6
2.4.	Equilibrio en el elemento diferencial de viga Timoshenko	7
2.5.	Esquema de problema completo de interacción	8
2.6.	Interacción suelo-estructura tipo Winkler	11
2.7.	Discontinuidad debida a modelo tipo Winkler	12
2.8.	Interacción suelo-estructura tipo Pasternak	12
2.9.	Interacción suelo-estructura tipo Veletsos	12
2.10	Elemento diferencial de la capa de cortante	13
2.11	Modos de vibración del elemento de viga considerados	14
2.12	.Tensiones rasantes sobre el fuste del pilote	15
2.13	.Esquema general del problema propuesto	18
2.14	Elemento de viga Timoshenko, considerando las inercias	19
3.1.	Mallas MEC multiregión: (Izquierda) Perspectiva de la malla usada, des- cribiendo un cuarto del dominio (Derecha) Detalle sección transversal del pilote, con secciones intermedias.	30
4.1.	Proceso de optimización del modelo, identificando el S_P que minimiza el error	34
5.1.	Respuesta del modelo optimizado. Datos de entrada: $L/D = 20, E_p/E_s = 100, \nu = 0.4, a_0^* = 0.01$, optimizando M	39
5.2.	Respuesta del modelo optimizado. Datos de entrada: $L/D = 20, E_p/E_s = 100, \nu = 0.4, a_0^* = 0.29$, optimizando M	39
5.3.	Respuesta del modelo optimizado. Datos de entrada: $L/D = 20, E_p/E_s = 100, \nu = 0.4, a_0^* = 0.65$, optimizando M	40
5.4.	Respuesta del modelo optimizado. Datos de entrada: $L/D = 20$, $E_p/E_s = 100$, $\nu = 0.4$, $a_0^* = 1.00$, optimizando M	40
5.5.	Comparativa de respuesta variando L/D . Datos de entrada: $E_p/E_s = 100$, $\nu = 0.4, a_0^* = 1.00$, optimizando u	42
5.6.	Comparativa de respuesta variando E_P/E_S . Datos de entrada: $L/D = 20$, $\nu = 0.4, a_0^* = 1.00$, optimizando u	42
5.7.	Comparativa de respuesta variando ν . Datos de entrada: $L/D = 20$, $E_p/E_s = 100$, $a_0^* = 1.00$, optimizando u	43
5.8.	Resultados optimizando el desplazamiento (u). Datos de entrada: $L/D =$	
	20, $E_p/E_s = 100$, $\nu = 0.4$, $a_0^* = 1.00$.	43
5.9.	Resultados optimizando el giro (θ). Datos de entrada: $L/D = 20$, $E_p/E_s = 100$, $\nu = 0.4$, $a_0^* = 1.00$.	44

ÍNDICE DE FIGURAS

5.10. Resultados optimizando el cortante (V). Datos de entrada: $L/D = 20$,	
$E_p/E_s = 100, \nu = 0.4, a_0^* = 1.00.$	44
5.11. Error respecto al S_P usado para su obtención. Datos obtencion.	45
5.12. Errores obtenidos de comparar el modelo Winkler y Pasternak con el BEM-	
BEM. Datos de entrada: $L/D = 20$, $E_p/E_s = 100$, $\nu = 0.4$, optimizando M.	46
5.13. Comparativa de errores variando L/D . Datos de entrada: $E_p/E_s = 100$,	
$\nu = 0.40$, optimizando u \ldots \ldots \ldots \ldots \ldots \ldots \ldots	47
5.14. Comparativa de errores variando E_P/E_S . Datos de entrada: $L/D = 20$,	
$\nu = 0.40$, optimizando u	47
5.15. Comparativa de errores variando ν . Datos de entrada: $L/D = 20, E_p/E_s =$	
100, optimizando u	48
5.16. Comparativa optimizando el cortante (V) cuando se prescinde de cabeceo	
y tensiones rasantes. Datos de entrada: $L/D = 20$, $E_p/E_s = 100$, $\nu_s = 0.4$.	49
5.17.Comparativa optimizando el flector (M) cuando se prescinde de cabeceo y	
tensiones rasantes. Datos de entrada: $L/D = 20, E_p/E_s = 100, \nu = 0.4.$	49
5.18. S_P frente a la frecuencia. Datos de entrada: $L/D = 20, E_p/E_s = 100,$	
$\nu = 0.4$, optimizando u	50
5.19.Comparativa S_P óptimo calculado en función de la variable a optimizar.	
Datos de entrada: $L/D = 20$, $E_p/E_s = 100$, $\nu = 0.4$.	51
5.20. Comparativa de S_P variando L/D . Datos de entrada: $E_p/E_s = 100, \nu =$	
	52
5.21. Comparativa de S_P variando E_P/E_S . Datos de entrada: $L/D = 20$, $\nu =$	
	53
5.22. Comparativa de S_P variando ν . Datos de entrada: $L/D = 20, E_p/E_s = 100,$	50
	53

ÍNDICE DE TABLAS

5.1.	Datos constantes en todas las configuraciones físicas ensayadas.	37
5.2.	Datos que varían según la configuración físicas que se ensaye	38
5.3.	Comparativa de la mejora en el error medio obtenido para cada variable de	
	salida, según la variable respecto a la que se optimice. Datos de entrada:	
	$L/D = 20, E_p/E_s = 100, \nu = 0.4.$	48

PRESENTACIÓN DEL DOCUMENTO

El presente proyecto se divide en 6 capítulos:

- *Capítulo 1*. Se introduce el tema y se exponen las razones que llevan a la realización de éste proyecto.
- *Capítulo 2*. Se explica, formula y resuelve analíticamente el modelo propuesto.
- Capítulo 3. Se valida el modelo propuesto: se presenta el modelo de referencia y se explica la medida de error.
- Capítulo 4. Se explica cómo se implementan el modelo propuesto y de referencia, así como la medida del error y la optimización.
- Capítulo 5. Se muestran los resultados más relevantes y comentan.
- Capítulo 6. Se detallan las conclusiones y futuras líneas de investigación.

Capítulo 1

INTRODUCCIÓN

1.1 Sumario

En el presente Proyecto Final de Carrera (PFC), se formula un modelo que representa el comportamiento dinámico de un pilote aislado cuando se le aplica una onda incidente vertical SH. El pilote se formula como una viga Timoshenko con masa y la interacción suelo-estructura comprende un planteamiento tipo Pasternak, que tiene en consideración cabeceo y tensiones rasantes sobre el pilote.

Se busca un modelo puramente analítico cuyos resultados sean aceptablemente parecidos a los obtenidos con métodos de resolución numéricos más rigurosos. Para ello, se usan impedancias de Novak, salvo en el segundo coeficiente de Pasternak, que se identifica.

El resultado es un modelo que mejora sensiblemente los resultados de uno Winkler, siempre que la frecuencia de estudio no sea baja, sin llegar a igualar la calidad de los datos a los obtenidos con la referencia.

1.2 Antecedentes y justificación

El PFC que se propone se integra en la línea de trabajo que llevan a cabo los miembros de la División de Mecánica de Medios Continuos y Estructuras del SIANI en el campo de la dinámica de estructuras y, en particular, en el estudio de la influencia de los fenómenos de interacción suelo-estructura en la respuesta dinámica de estructuras enterradas.

Se busca desarrollar un modelo simple alternativo a un modelo general de medio continuo, pero suficientemente preciso para estimar la respuesta sísmica de una estructura enterrada. Ello reduce la necesidad de acudir a métodos numéricos complejos y computacionalmente más costosos, y permite analizar e incorporar de forma intuitiva las propiedades dinámicas más importantes del sistema. Se considera el estudio de la respuesta sísmica de tipologías estructurales muy habituales como son pozos, silos enterrados, estaciones de bombeo, etc., cuyo colapso representaría un importante riesgo para la población.

1

En concreto, se propone la formulación, implementación y calibración de un modelo paramétrico (tipo Pasternak) para la determinación de la respuesta sísmica de una estructura enterrada en un semiespacio homogéneo. Por su facilidad de implementación, un modelo de estas características resultaría de gran interés para la comunidad técnica en ingeniería sísmica y estructural. Por calibración se entiende la identificación de los parámetros del modelo que permitan ajustar la respuesta del mismo a la obtenida con otros modelos más rigurosos de medio continuo ya desarrollados previamente por el Grupo. Esta identificación se realizará en un ámbito de propiedades y dimensiones del problema con interés en la práctica.

Este PFC es continuación de otro PFC previo desarrollado por Ariel Santana Naranjo y titulado 'Modelo simple para el cálculo de la respuesta dinámica de estructuras enterradas', presentado en la EIIC el 16 de septiembre de 2009. Avanza en el desarrollo matemático del modelo y propone una estrategia para la identificación de los parámetros del mismo utilizando como referencia resultados obtenidos con modelos más rigurosos.

1.3 Objetivos

En este PFC se proponen una serie de objetivos en una secuencia tal que:

- 1. Repasar las bases teóricas de la dinámica de estructuras de barras. Esta materia forma parte de la asignatura 'Teoría de Estructuras y Construcciones Industriales' que se ha cursado en la titulación, si bien se requiere un nivel de comprensión más profundo de estos contenidos para abordar el proyecto que se propone.
- 2. Por las mismas razones, presentar los modelos de Elementos de Contorno desarrollados por el Grupo, con la idea de utilizar sus resultados como referencia en el proceso de identificación paramétrica.
- 3. Formulación del modelo paramétrico en el dominio de la frecuencia para el análisis del problema de interacción suelo-estructura correspondiente a una estructura enterrada sometida a carga sísmica. Las estructuras analizadas, por sus dimensiones, pueden simularse mediante un modelo tipo viga. Dicha viga se formulará en sentido amplio considerando deformación por cortante (modelo Timoshenko). El terreno y la interacción con la estructura se formula a través de un modelo discreto multi-paramétrico: la rigidez de un perfil de suelo con deformación transversal + resortes y amortiguadores en serie y excitados por el campo incidente consistente en una onda de corte armónica que se propaga verticalmente en el suelo.
- 4. Implementación de las ecuaciones resultantes y solución analítica de las mismas. Verificar el modelo a partir de problemas con solución de referencia.
- 5. Implementación del estudio de sensibilidad del modelo con los parámetros del modelo. Determinación de los valores de dichos parámetros que minimicen las diferencias con los resultados obtenidos del modelo de continuo de elementos de contorno (riguroso) utilizado como referencia en un rango de propiedades y dimensiones de interés práctico.

capítulo2

FORMULACIÓN DEL MODELO

En éste capítulo se introducen los elementos de los que se compone el modelo; se detalla el desarrollo matemático que lleva a la definición y resolución del problema.

2.1 Definición del problema

Se tiene un pilote de fricción aislado, macizo y cilíndrico completamente enterrado, perpendicularmente respecto a nivel de rasante. Se encuentra inmerso en el terreno, sin encontrar cambios de estrato a lo largo del fuste y en contacto completo con éste (unión soldada). Tanto pilote como suelo se consideran linealmente elásticos, isotrópicos y homogéneos.

Se plantea pues un modelo para estudiar su respuesta dinámica frente a la incidencia vertical de una onda SH armónica, en toda la longitud del pilote.

Este planteamiento inicial podría bien ser el usado por Ariel Santana [10]. En dicho PFC se estudia el comportamiento de un pilote con baja relación longitud-diámetro (L/D), que cumple las premisas de la teoría de vigas clásica.

Sin embargo, la principal diferencia con el presente PFC es que se pretende buscar una resolución puramente analítica, de forma que se haga una representación de la realidad que sea por lo menos tan fiable como la de partida. Para ello, se tiene presente lo expuesto en trabajos de Hetenyi, Veletsos, Mylonakis, Vlasov-Leontiev, Kerr, entre otros (Véase la bibliografía).

El método a seguir es plantear el contacto entre suelo y estructura (modelando cada uno por separado y luego poniéndolos en común), de lo cual surge la ecuación diferencial a la que se aplican condiciones de condiciones de contorno (CC) para solucionarla [12].

Por tratarse de un problema de interacción suelo-estructura y aplicándose una excitación de tipo armónico, éste se resuelve en el dominio de la frecuencia. Es práctica habitual, pues los fenómenos físicos que se quiere representar se ven fuertemente influenciados por la frecuencia.

Así pues, antes de entrar a formular el modelo, se considera adecuado detallar más detenídamente cómo y porqué se decide incluir algunos de los componentes del mismo. Véase a continuación:

2.1.1 Ecuación de comportamiento del pilote

El pilote se modela como una viga, que en nuestro caso se encuentra enterrada.

2.1.1.1 Euler-Bernoulli

A menudo se considera la viga a flexión, conocida como Euler-Bernoulli (E-B) en la teoría clásica de vigas [9]. Se basa en 3 hipótesis:

- Los desplazamientos en la dirección del eje y de todos los puntos de una sección transversal son iguales a los del punto de corte entre el eje longitudinal x de la viga y dicha sección.
- El desplazamiento lateral en la dirección z de cualquier punto es nulo.
- Las secciones transversales planas y normales al eje de la viga antes de la deformación, permanecen planas y ortogonales a dicho eje después de la deformación.

Cuya representación gráfica se muestra en la figura 2.1.

Figura 2.1: Deformación de viga Euler-Bernoulli

Nótese que en éste tipo de viga se desprecia la deformación debida a los esfuerzos cortantes, por lo que el giro de la sección depende meramente de la flexión, de forma que éste se define directamente como se muestra en la ecuación 2.1:

$$u_x = -y \cdot \theta \tag{2.1}$$

Por ello, la ecuación diferencial que se obtiene es relativamente sencilla y funciona bastante bien para vigas esbeltas o muy esbeltas.

Véase, pues, la representación analítica del comportamiento de éste tipo de viga. Se plantea el equilibrio transversal de la sección representada en la figura 2.2:

4

Figura 2.2: Equilibrio en el elemento diferencial de viga Euler-Bernoulli

$$(V+dV) - V + q(x)dx = 0 \rightarrow \frac{\partial V}{\partial x} + q(x) = 0$$
 (2.2)

Para hallar la expresión del esfuerzo cortante, en cambio, se tiene de plantear equilibrio de momentos:

$$V = -EI\frac{\partial^3 u_y}{\partial x^3} \tag{2.3}$$

Y sustituyendo 2.3 en 2.2, se tiene la ecuación de gobierno para una viga E-B, con una excitación q(x) y sin inercias, ni momento repartido:

$$EI\frac{\partial^4 u_y}{\partial x^4} = q(x) \tag{2.4}$$

donde u_y es el desplazamiento transversal, E es el módulo de elasticidad del material e I, la inercia de la sección.

2.1.1.2 Timoshenko

Existe otro modelo de viga, el Timoshenko [14] [15], que considera el efecto en las deformaciones de esfuerzos flectores y cortantes, y cuya representación gráfica se muestra en la figura 2.3.

Además, las hipótesis de partida de Timoshenko difieren de las de E-B sólo en la posición que toma la sección tras la deformación. Véase:

- Los desplazamientos en la dirección del eje y de todos los puntos de una sección transversal son iguales a los del punto de corte entre el eje longitudinal x de la viga y dicha sección.
- El desplazamiento lateral en la dirección z de cualquier punto es nulo.
- Las secciones transversales planas y normales al eje de la viga antes de la deformación, siguen permaneciendo planas, pero no necesariamente normales al eje después de la deformación.

2 Formulación del modelo

Figura 2.3: Deformación de viga Timoshenko

En éste caso debe tenerse cuidado. La consecuencia de no despreciar la deformación debida a los esfuerzos cortantes es que la ecuación de gobierno se complica un poco. Se puede observar formulando a partir de la definición de deformación longitudinal (ε_{xx}) y distorsión angular (γ_{xy}), siendo éstas:

$$\varepsilon_{xx} = \frac{\partial u_x}{\partial x} = -y \frac{\partial \theta}{\partial x}$$
 (2.5)

$$\gamma_{xy} = \frac{\partial u_x}{\partial y} + \frac{\partial u_y}{\partial x} = -\theta + \frac{\partial u_y}{\partial x}$$
(2.6)

Según la ley de comportamiento elástico, la tensión normal (σ_{xx}) y la tensión tangencial (τ_{xy}) que aparecen en la sección transversal son:

$$\sigma_{xx} = E \cdot \varepsilon_{xx} = -E \cdot y \cdot \frac{\partial \theta}{\partial x}$$
(2.7)

$$\tau_{xy} = G \cdot \gamma_{xy} = G \cdot \left(\frac{\partial u_y}{\partial x} - \theta\right)$$
(2.8)

Así pues, teniendo las expresiones 2.7 y 2.8, se puede hallar la expresión de los esfuerzos integrando para el área de la sección:

$$V = -\iint_{A} \tau_{xy} \, dA \quad \to \quad V = \kappa AG\left(\frac{\partial u_y}{\partial x} - \theta\right) \tag{2.9}$$

$$M = \iint_{A} y \cdot \sigma_{xx} \, dA \quad \to \quad M = EI \, \frac{\partial \theta}{\partial x} \tag{2.10}$$

A partir de aquí, teniendo lo necesario ya preparado, podemos plantear las ecuaciones de equilibrio del elemento diferencial, tal como se ilustra en la figura 2.4:

Figura 2.4: Equilibrio en el elemento diferencial de viga Timoshenko

$$(V+dV) - V + q(x)dx = 0 \rightarrow \frac{dV}{dx} + q(x) = 0$$
 (2.11)

$$(M + dM) - M + Vdx = 0 \rightarrow \frac{dM}{dx} + V = 0$$
 (2.12)

Ahora, sustituyendo 2.9 en 2.11 y 2.9 en 2.10 y 2.12,

$$\kappa AG\left(\frac{\partial^2 u_y}{\partial x^2} - \frac{\partial \theta}{\partial x}\right) + q(x) = 0$$
(2.13)

$$EI\frac{\partial^2\theta}{\partial x^2} + \kappa AG\left(\frac{\partial u_y}{\partial x} - \theta\right) = 0$$
(2.14)

derivando dos veces la ecuación 2.13 y una, la ecuación 2.14,

$$\kappa AG\left(\frac{\partial^4 u_y}{\partial x^4} - \frac{\partial^3 \theta}{\partial x^3}\right) + \frac{\partial^2 q(x)}{\partial x^2} = 0$$
(2.15)

$$EI\frac{\partial^{3}\theta}{\partial x^{3}} + \kappa AG\left(\frac{\partial^{2}u_{y}}{\partial x^{2}} - \frac{\partial\theta}{\partial x}\right) = 0$$
(2.16)

y sustituyendo las expresiones de $\partial^3 \theta / \partial x^3$ y $\partial \theta / \partial x$ halladas en 2.15 y 2.16 respectivamente y ordenando los términos, se tiene:

$$EI \cdot \frac{\partial^4 u_y}{\partial x^4} = -\frac{1}{\kappa AG} \cdot \frac{\partial^2 q(x)}{\partial x^2} + q(x)$$
(2.17)

que viene a ser la ecuación de gobierno para una viga Timoshenko, para una excitación q(x) y sin tener en cuenta inercias, ni momentos repartidos.

Nótese la diferencia entre la ecuación de gobierno E-B y la Timoshenko. Mientras en la E-B el esfuerzo aplicado a una derivada cuarta del desplazamiento equivale al esfuerzo repartido aplicado, en Timoshenko la relación no es tan directa.

Utilizar una viga E-B suele ser en términos generales suficientemente preciso pero, cuando se trabaja con estructuras poco esbeltas, despreciar los esfuerzos cortantes en la viga no es aconsejable, pues conduce a resultados alejados de la realidad. Éste en el caso que desarrolla Santana en su Trabajo Fin de Master (TFM) [11], que trata el caso concreto de estructuras con gran canto, en cuyas conclusiones además propone tener más presentes los esfuerzos cortantes. Por ello y porque así se consigue un modelo que cubre más posibles circunstancias, se decide considerar en adelante el pilote como una viga Timoshenko.

2.1.2 Condiciones de contorno

Como se comenta anteriormente, las CC son necesarias para la resolución de la ecuación diferencial surgida de plantear contacto entre suelo y pilote. Los esfuerzos que soporta el mismo, considerándolo viga corta, vienen marcados por las condiciones consideradas en los extremos de la misma [12], por lo que la elección de unas CC u otras afecta sensíblemente al modelo y a los resultados que se obtienen.

Por otro lado, hay que tener en cuenta que el problema de interacción completa con el terreno se compone de la interacción inercial y de la interacción cinemática [13], como se representa en la figura 2.5. Así, como explica Soriano:

"Las ecuaciones de la interacción cinemática permiten calcular el movimiento con el que habría de resolverse las ecuaciones de la interacción inercial para tener una respuesta completa del sistema. La interacción cinemática tiene un efecto que equivale a modificar el movimiento de cálculo en el estudio de la interacción inercial."

Figura 2.5: Esquema de problema completo de interacción

Dicha división normalmente se hace para poder estudiar detenidamente el efecto de la interacción inercial, pero no porque simplifique los cálculos necesariamente, pues se considera la resolución de la interacción cinemática de dificultad equivalente a resolver la interacción completa. Como los resultados pueden variar apreciablemente, se suele realizar estudio de sensibilidad para discernir si se puede prescindir o limitar el efecto de la interacción cinemática o no y si los datos obtenidos son fiables. Dicha interacción tiene el efecto de reducir las amplitudes, por lo que salvo que se trate de un caso en el que no sea posible por definición como, por ejemplo, cuando se trata de un análisis sísmico, el efecto se considera favorable.

Por todo ello, se decide buscar una situación intermedia y que por tanto, aún siendo una simplificación, contemple una interacción completa del terreno y estructura sin perder rigor. Así, se escogen unas CC que, estando a medio camino entre las aplicadas en un problema de interacción cinética y uno de interacción inercial, representen el problema de interacción completa. De esta manera, el extremo superior del pilote debería asegurar la estabilidad de la superestructura; mientras que el extremo inferior se encuentra sin roca madre bajo el mismo, ni ningún impedimento aparte del propio terreno para desplazarse. Las CC se reducen a:

- $u_{(\xi=0)} = 1$
- $\theta_{(\xi=0)} = 0$
- $V_{(\xi=1)} = 0$
- $M_{(\xi=1)} = 0$

2.1.3 Excitación

Se supone como excitación una onda de incidencia vertical SH. Analíticamente, se expresa tal que:

$$u_{u}^{I} = A \cdot e^{j \frac{\omega}{c_{s}} x} + B \cdot e^{-j \frac{\omega}{c_{s}} x}$$
(2.18)

donde c_s es la velocidad de propagación transversal de la onda, ω es la frecuencia de la onda y A y B son constantes a determinar que definen las amplitudes de las ondas que conforman la onda incidente. Que la onda incidente tenga ésta forma, se debe a que se supone la onda y la reflexión de la misma cuando llega a un cambio de estrato, por lo que el efecto realmente es el de la suma de ambas, que viajan en direcciones opuestas.

Así pues, retomando 2.18, se obtiene la derivada:

$$\frac{\partial u_y^I}{\partial x} = j \frac{\omega}{c_s} \left(A \cdot e^{j \frac{\omega}{c_s} x} + B \cdot e^{-j \frac{\omega}{c_s} x} \right)$$
(2.19)

Atendiendo a las CC que se decide aplicar, se tiene $\tau_{xz} = 0$ y $u^I = 1$ para x = 0:

$$\frac{\partial u_y^I}{\partial x} = 0 \quad \rightarrow \quad A = B \quad \rightarrow \quad A = B = \frac{1}{2}$$

De modo que:

$$u_y^I = \frac{1}{2} \cdot \left(e^{: j \frac{\omega}{c_s} x} + e^{-j \frac{\omega}{c_s} x} \right)$$

Ahora bien, adimensionalizando, haciendo un cambio de variable tal que $x = \xi \cdot L$, y definiendo $a_0^* = \frac{\omega D}{c_c}$ como la frecuencia adimensional de la onda:

$$\bar{u}_{y}^{I} = \frac{1}{2} \cdot \left(e^{j a_{0}^{*} \frac{L}{D}\xi} + e^{-j a_{0}^{*} \frac{L}{D}\xi} \right)$$
(2.20)

Nótese que si no se supusiese que la excitación tiene la forma descrita, con expresión analítica conocida (y sencilla), probablemente no se podría llegar a la ecuación diferencial de gobierno permitiese su resolución sin métodos numéricos de por medio.

2.1.4 Interacción suelo-estructura

Dícese interacción suelo-estructura a "El mecanismo por el cual la presencia de la estructura influye en el movimiento del terreno" [13]. Como se viene diciendo, trata de caracterizar un fenómeno complicado; existe infinidad de páginas escritas tratando de modelizar adecuadamente el mismo. En éste PFC se busca ahondar en el conocimiento de los factores que afectan en mayor medida en la interacción suelo-estructura de forma simplificada, por lo que la manera misma de representar la interacción suelo-estructura es crítica para el problema.

Así pues, se trata el concepto de reacción del terreno suponiendolo como una caja negra, es decir, "*no importando que sucede dentro del material, sino solo su respuesta*" [7]. Para ello se asume dicha reacción de forma simplificada, aplicando el concepto de coeficiente de balasto, por el cual se sintetiza en un coeficiente la respuesta del terreno.

Típicamente, dicho coeficiente es un valor complejo que representa la impedancia del terreno, en un smil claro al triángulo de potencias de la rama eléctrica, donde la parte real representa la resistencia y la imaginaria, la amortiguación del terreno. Analíticamente se expresa tal que:

$$\bar{K} = k + i\,\omega\,c\tag{2.21}$$

lo cual proviene de cambiar al dominio de la frecuencia la ecuación de gobierno genérica $m\ddot{u}(x) + c\dot{u}(x) + ku(x) = q(t,x)$ (suponiéndola una excitación armónica) y reunir en un solo término los coeficientes no dependientes de la masa.

Se suele representar el amortiguamiento así $(f_D = c \dot{u})$ porque resulta muy conveniente a la hora de formular la ecuación de gobierno, pero con ello se tiene una impedancia dependiente de la frecuencia. Haciendo los cambios adecuados, se puede llegar a un coeficiente de amortiguación que no dependa de la frecuencia de excitación.

Como hace ver Clough [2], se puede definir el amortiguamiento histerético como la fuerza de amortiguamiento proporcional a la amplitud del desplazamiento, pero en fase con la velocidad. Para el caso de un movimiento armónico, se expresa tal que:

$$f_D(t) = i\,\zeta\,k\,\dot{u}\tag{2.22}$$

Siguiendo con éste planteamiento, si se vuelve a escribir la ecuación de gobierno, en el dominio de la frecuencia, con éste amortiguamiento, se extrae una impedancia compleja cuya expresión sería:

$$\bar{K} = k (1 + i \zeta)$$
 (2.23)

Con todo lo dicho y volviendo al concepto de coeficiente de balasto en sí, se tiene que la interacción suelo-estructura a estudiar tiene un coeficiente de balasto complejo. Así, el modelo a usar es uno tipo Winkler.

2.1.4.1 Winkler

Se empieza con Winkler por ser la forma más sencilla de representar la interacción sueloestructura. El terreno se plantea como un conjunto de resortes complejos independientes entre sí, de forma que responde de forma análoga a como expresa la ley de Hooke, como se aprecia en la figura 2.6 :

Figura 2.6: Interacción suelo-estructura tipo Winkler

Analíticamente, se representa tal que:

$$q_{H}^{W} = -K_{W} \cdot (u_{y} - u_{y}^{I})$$
(2.24)

donde K_W es el coeficiente de balasto (impedancia Winkler), u_y es el desplazamiento del pilote, u_y^I es el desplazamiento del terreno debido a la excitación que pueda afectar al mismo, y q_H^W es la carga que percibe el pilote (según Winkler).

Sin embargo, a pesar de ser tan convenientemente sencillo, el planteamiento de Winkler raramente representa la realidad del terreno, pues el efecto que se consigue con tal representación es que la respuesta sea discontinua.

Como se puede ver en la figura 2.7, con éste planteamiento es lo mismo considerar una carga distribuida en un cuerpo elástico que una puntual en un cuerpo rígico; puesto que, al ser independientes los resortes entre sí cualquier resorte fuera del área cargada no percibe la carga. Por eso aparece la discontinuidad en el contorno de dicho área.

Así, para conseguir que la respuesta tenga un carácter más continuo, hace falta crear una cierta dependencia entre los resortes, lo cual no es nada descabellado. Según el trabajo de Vlasov-Leontiev [17], las reacciones del terreno aparecen *incluso* fuera de la zona donde se aplica la carga, de forma que la carga se expande por cohesión. Suponer por tanto una mayor continuidad en el material introduciría la deflexión del terreno en el modelo [5], haciendo más realista la respuesta obtenida con el mismo.

Figura 2.7: Discontinuidad debida a modelo tipo Winkler

2.1.4.2 Pasternak

Una vez se llega a la conclusión de que hace falta conectar los resortes de Winkler, se tienen varias maneras de hacerlo. Pasternak propone lo siguiente: *suponer una estrato viscoelástico compuesto por elementos incompresibles que se deforman solo por cortante y transversalmente respecto a los mismos* [7], entre el terreno y la estructura. Véase en la figura 2.8.

Figura 2.8: Interacción suelo-estructura tipo Pasternak

Dicha suposición se parece a la propuesta por Veletsos [16], que consiste en conectar la serie de capas de terreno (resortes) con una base común, eso sí, no entre terreno y estructura. Véase en la figura 2.9.

Figura 2.9: Interacción suelo-estructura tipo Veletsos

Otros modelos parecidos son los de Kerr y Vlasov-Leontiev, que Jones-Xenophontos demuestra suficientemente parecidos [6]. Entiéndase, con la función de forma adecuada para el modelo de Vlasov-Leontiev se llega a la ecuación de gobierno de Kerr.

Nótese ahora que se puede asumir el modelo Kerr como una extensión del Pasternak (o éste un caso particular del Kerr). Así pues, volviendo a intentar tomar el modelo más simple, pero realista, se busca un modelo tipo Pasternak.

De ésta manera, representando analíticamente el caso, se parte con la carga que siente la estructura proveniente del terreno:

$$q_{y}^{P} = -K_{P1} \left(u_{y} - u_{y}^{I} \right) - q_{y}^{Shear}$$
(2.25)

Por otra parte, sabiendo que la capa de cortante responde con un cortante de carácter viscoleástico, se tiene:

$$V^{Shear} = K_{P2} \cdot \frac{\partial u_y}{\partial x} \tag{2.26}$$

Planteando equilibrio en un único elemento de la capa de cortante, como se representa en la figura 2.10, se tiene lo siguiente:

Figura 2.10: Elemento diferencial de la capa de cortante

$$\frac{\partial V^{Shear}}{\partial x} + q_y^{Shear} = 0 \quad \rightarrow \quad q_y^{Shear} = K_{P2} \cdot \frac{\partial^2 u_y}{\partial x^2} \tag{2.27}$$

por lo que, sustituyendo la expresión de la carga debida a la capa de cortante del terreno (ecaución 2.26) en la ecuación de equilibrio (2.27), se tiene:

$$q_y^P = -K_{P1} \cdot (u_y - u_y^I) + K_{P2} \cdot \frac{\partial^2 u_y}{\partial x^2}$$
(2.28)

El primer término es coneptualmente idéntico al mostrado con la interacción tipo Winkler. Nótese además que si K_{P2} se anula, la carga tiene la misma forma que la de Winkler, por lo que se puede asumir $K_{P1} = K_W$. Renombrando las impedancias se tiene, pues la expresión escogida para representar el terreno, que sintetiza su reacción en dos coeficientes de balasto:

$$q_{H}^{P} = -K_{W} \cdot (u_{y} - u_{y}^{I}) + K_{P} \cdot \frac{\partial^{2} u_{y}}{\partial x^{2}}$$
(2.29)

donde q_H^P es la carga horizontal que soporta el pilote siguiendo el planteamiento de Pasternak, K_W es la impedancia Winkler, y K_P es la impedancia nueva introducida por el

modelo Pasternak. O segundo coeficiente de balasto, para nuestro caso. Como el modelo Pasternak generaliza el modelo Winkler, basta con anular la impedancia Pasternak para obtener el modelo Winkler.

De esta manera, asumiendo una interacción suelo-estructura de tipo Pasternak, se espera dar la continuidad suficiente al modelo. Además, contar con un parámetro más, desde el punto de vista puramente matemático, debería suponer una ventaja respecto a usar un modelo Winkler.

2.1.4.3 Inercias, cabeceo y distorsión

Para seguir dando el carácter general al modelo, se tienen en cuenta también los siguientes factores en el comportamiento del pilote, con los que se espera mejorar la calidad del modelo en cuanto a representar la realidad física del pilote y su comportamiento:

INERCIAS

Si bien la inercia del pilote es una característica debida puramente a la masa del mismo, afecta sensiblemente en la interacción suelo-estructura y, por tanto, en la respuesta global del modelo. Aparte, tal como se nombró anteriormente, se han supuesto condiciones de contorno tales que representen de forma sencilla la interacción completa con el terreno, por lo que se tenía ya en cuenta implícitamente que se pretendía incluir el efecto de la inercia en el conjunto.

Así pues, tanto a traslación como a rotación, sus expresiones analíticas son:

$$q_{H}^{inercia} = \rho A \ddot{u}_{y} \tag{2.30}$$

$$q_{\theta}^{inercia} = \rho I \ddot{\theta} \tag{2.31}$$

siendo la inercia a la rotación una innovación respecto al modelo planteado por Ariel Santana en su PFC [10].

CABECEO

Un modelo Winkler básico tiene en cuenta principalmente el desplazamiento, dando expresión a la reacción del terreno al mismo, como se ve en la figura 2.11, (a) :

Figura 2.11: Modos de vibración del elemento de viga considerados

Sin embargo, se puede complementar con la reacción al giro. En nuestro caso se decide introducir la expresión del momento distribuido, asociado con la impedancia al giro (Figura 2.11, *(b)*). Ésto también supone una innovación respecto al PFC de Ariel Santana [10].

Así, el momento repartido tiene una expresión tal que:

$$q_{\theta} = -K_R \cdot \theta \tag{2.32}$$

donde K_R es la impedancia al giro.

Nótese que aquí no se incluye difractado ($\theta - \theta^I$), porque el giro debido exclusivamente a la onda incidente (θ^I) es de otra naturaleza: cortante, no flector.

DISTORSIÓN

Miembros de la división, también dedicados a testeo y desarrollo de modelos de interacción suelo-estructura, proponen en un artículo (aún en revisión, para *Bulletin of Earthquake Engineering*) incluir el efecto de las tensiones rasantes al fuste del pilote, para mejorar la respuesta del modelo en lo que al esfuerzo cortante se refiere. Si bien puede parecer que el impacto de dichos esfuerzos no es de gran calado, en los resultados se puede observar que sí afecta apreciablemnte a la respuesta del modelo.

Se propone pues introducir una carga como la representada en la figura 2.12:

Figura 2.12: Tensiones rasantes sobre el fuste del pilote

Su expresión analítica se obtiene entonces de integrar las tensiones rasantes en el perímetro de la sección:

$$q_{\theta}^{I} = -\oint r \, \tau_{x}^{I} dl \tag{2.33}$$

Sustituyendo, sacando las constantes,

$$q_{\theta}^{I} = -\int_{0}^{2\pi} \frac{D}{2} \sin\varphi G_{s} \frac{\partial u_{y}^{I}}{\partial x} \frac{D}{2} \sin\varphi G_{s} d\varphi = -G_{s} \frac{D^{2}}{4} \frac{\partial u_{y}^{I}}{\partial x} \int_{0}^{2\pi} \sin\varphi^{2} d\varphi$$
(2.34)

2 Formulación del modelo

y resolviendo la integral:

$$q_{\theta}^{I} = -K_{D} \cdot \frac{\partial u_{y}^{I}}{\partial x} \quad / \quad K_{D} = G_{s} D^{2} \frac{\pi}{4}$$
(2.35)

donde K_D se expresa como si fuese una impedancia a la distorsión, no dependiente de la frecuencia, como se representa en 2.11, (c).

2.1.4.4 Cálculo de impedancias

Ya se tiene definida la interacción suelo-estructura. Ahora bien, ¿qué valor se le debería dar a la impedancia? Sobre eso también hay mucho escrito. Inicialmente se piensa en usar el cálculo de Gazetas [4], pero cuando se considera incluir el cabeceo, se hace necesario utilizar un cálculo que incluya dicho tipo de movimiento. Así, se piensa en Novak [8], cuyos cálculos consideran 4 modos de vibración: desplazamiento horizontal, desplazamiento vertical, giro y torsión. En nuestro caso éste último no se usa.

Las hipótesis iniciales de Novak son:

- suelo: infinito, homogéneo, isotrópico, amortiguamiento histerético
- pilote: rigido, circular, sin masa, longitud infinita
- pequeños movimientos
- vibracion armónica

y sus impedancias:

$$K_H = G_s \cdot D \cdot S_H, \quad K_R = G_s \cdot D^2 \cdot S_R \tag{2.36}$$

donde G_s es el módulo de rigidez del suelo, D es el diámetro del pilote y S_H y S_R son las siguientes impedancias adimensionales:

$$S_H = \pi \cdot \frac{a_0^*}{2} \cdot T \tag{2.37}$$

$$S_R = \frac{\pi}{4} \cdot (1 + j2\xi) \left[1 + a_0 \frac{K_0(a_0)}{K_1(a_0)} \right]$$
(2.38)

cuyas constantes son:

$$T = -\frac{4K_1(b_0)K_1(a_0) + a_0K_1(b_0)K_0(a_0) + b_0K_0(b_0)K_1(a_0)}{b_0K_0(b_0)K_1(a_0) + a_0K_1(b_0)K_0(a_0) + b_0a_0K_0(b_0)K_0(a_0)}$$
(2.39)

$$a_0 = \frac{j \, 2 \, a_0^*}{\sqrt{1 + j 2\xi_s}} \tag{2.40}$$

$$b_0 = \frac{j \, 2 \, a_0^*}{\eta \sqrt{1 + j 2\xi_s}} \tag{2.41}$$

$$\eta = \sqrt{\frac{2(1-\nu_s)}{1-2\nu_s}}$$
(2.42)

donde las $(K_n(z))$ son funciones modificadas de Bessel de segundo tipo, order n y argumento z.

A pesar de las diferencias entre estas hipótesis y las asumidas en nuestro modelo, se considera que el resultado es suficientemente bueno. Nótese que aunque Novak no tenga en cuenta la masa, nosotros hemos introducido la inercia, para no perder de vista su efecto.

Por otro lado, es importante prestar atención a la dependencia que tiene la impedancia dinámica de la frecuencia. Según Soriano [13], *la equivalencia entre el comportamiento de un medio continuo (el semiespacio donde se apoya el cimiento) y un modelo discreto sólo es posible cuando las llamadas constantes de resorte son función de la frecuencia de excitación*. En la implementación del problema se nota especialmente.

En cuanto a Novak, de nuevo, en general da buenos resultados, salvo que se quieran representar bajas frecuencias o, directamente, un problema estático. Además, falla para estructuras poco esbeltas, lo cual no extraña si se recuerda que se formula pensando en un pilote de longitud infinita. Dicho error se debe a que no expresa bien la capacidad del medio, entre la zona de contacto y el medio lejano, para transmitir con esfuerzos verticales los esfuerzos cortantes horizontales, según apunta Veletsos [16].

Por ello, Santana estudia en su TFM otras formas de calcular la impedancia del terreno [11], encontrado que Mylonakis mejora los resultados de Novak. También discute el modelo tipo Vlasov-Leontiev, haciendo ésfasis en la importancia de seleccionar la función de forma adecuada.

Como se nombra anteriormente, la diferencia entre un modelo tipo Kerr y uno tipo Vlasov-Leontiev reside precisamente en esas funciones de forma. También que el modelo Pasternak podría considerarse un caso particular del Kerr. Con todo ésto, lo que se pretende en éste PFC es alcanzar una representación integre todas las observaciones hechas hasta ahora para dar una respuesta sencilla, pero fiable, a cómo se comporta el pilote frente a una excitación armónica del terreno.

Así, si uno asume conocidos la impedancia para cada modo de vibración del pilote, calculándolas con el procedimiento de Novak, sólo queda pendiente el coeficiente Pasternak (K_P). De ésta manera, el modelo pasa a ser paramétrico, dependiente del valor que tome K_P .

Sin embargo, para poder identificar el valor óptimo de K_P y comparar resultados entre distintas configuraciones físicas, hace falta adimensionar dicho parámetro. Por ello, tomando los términos dependientes del mismo de la ecuación 2.68 y se tiene:

$$\frac{L^2 K_P}{EI}, \quad \frac{K_P}{GA\kappa} \tag{2.43}$$

haciendo análisis dimensional sobre los mismo, para asegurar que dichos términos sean adimensionales, se llega a:

$$K_P = G \cdot D^2 \cdot S_P \tag{2.44}$$

donde G es un módulo de rigidez y S_P es el parámetro adimensional de Pasternak.

En adelante, se trabaja principalmente con S_P , pues es el parámetro que se optimiza, buscando el valor del mismo que ayude a ajustar mejor las curvas de Pasternak (usando datos de otro modelo como referencia). Para los cálculos, se asume que el G presente en la ecuación 2.44 coincide con G_s , pues así recuerda mucho a las fórmulas 2.36.

2.1.4.5 Esquema general

Teniendo en cuenta lo anterior, podemos representar el problema con el esquema mostrado en la figura 2.13:

Figura 2.13: Esquema general del problema propuesto

2.2 Formulación de la ecuación general de gobierno

Habiendo explicado las partes de las que se compone el conjunto del modelo, se puede entrar a la formularlo; de forma que se representa analíticamente lo que se ve en la figura 2.13.

Como se quiere integrar el efecto de las inercias, el cabeceo y de la distorsión, se hace necesario replantear la ecuación general de gobierno para una viga Timoshenko, pero ésta vez con los elementos nombrados. Partimos pues planteando equilibrio en el elemento de viga, según se muestra en la figura 2.14, teniendo en cuenta las inercias:

$$\frac{\partial V}{\partial x} - \rho A \ddot{u}_y + q_y = 0 \tag{2.45}$$

$$\frac{\partial M}{\partial x} + V - \rho I \ddot{\theta} + q_{\theta} = 0$$
(2.46)

Tomando la ecuación 2.9, que define el esfuerzo cortante, se sustituye en 2.45. Lo obtenido, se deriva una y dos veces respecto a x, como se muestra:

Figura 2.14: Elemento de viga Timoshenko, considerando las inercias

$$\frac{\partial \theta}{\partial x} = \frac{\partial^2 u_y}{\partial x^2} - \frac{\rho}{G\kappa} \cdot \ddot{u}_y + \frac{1}{GA\kappa} \cdot q_y$$
(2.47)

$$\frac{\partial^2 \theta}{\partial x^2} = \frac{\partial^3 u_y}{\partial x^3} - \frac{\rho}{G\kappa} \cdot \frac{\partial \ddot{u}_y}{\partial x} + \frac{1}{GA\kappa} \cdot \frac{\partial q_y}{\partial x}$$
(2.48)

Con la ecuación 2.9 y 2.10 en 2.48, se tiene:

$$\frac{\partial^2 \theta}{\partial x^2} + \frac{GA\kappa}{EI} \left(\frac{\partial u_y}{\partial x} - \theta \right) - \frac{\rho}{E} \cdot \ddot{\theta} + \frac{1}{EI} \cdot q_\theta = 0$$
(2.49)

Sustituyendo en 2.49 la ecuación 2.48, que corresponde al valor de la segunda derivada parcial de θ respecto a x, tenemos:

$$\frac{\partial^{3} u_{y}}{\partial x^{3}} - \frac{\rho}{G\kappa} \cdot \frac{\partial \ddot{u}_{y}}{\partial x} + \frac{1}{GA\kappa} \cdot \frac{\partial q_{y}}{\partial x} + \frac{GA\kappa}{EI} \left(\frac{\partial u_{y}}{\partial x} - \theta \right) - \frac{\rho}{E} \cdot \ddot{\theta} + \frac{1}{EI} \cdot q_{\theta} = 0$$
(2.50)

Derivando la ecuación 2.50:

$$\frac{\partial^4 u_y}{\partial x^4} - \frac{\rho}{G\kappa} \cdot \frac{\partial^2 \ddot{u}_y}{\partial x^2} + \frac{1}{GA\kappa} \cdot \frac{\partial^2 q_y}{\partial x^2} + \frac{1}{GA\kappa} \cdot \frac{\partial^2 q_y}{\partial x^2} + \frac{GA\kappa}{EI} \left(\frac{\partial^2 u_y}{\partial x^2} - \frac{\partial\theta}{\partial x}\right) - \frac{\rho}{E} \cdot \frac{\partial\ddot{\theta}}{\partial x} + \frac{1}{EI} \cdot \frac{\partial q_\theta}{\partial x} = 0$$
(2.51)

Tomando las expresiones 2.47 y 2.51, se hace un cambio para sacar los términos dependientes de θ de la ecuación. Se tiene pues:

$$\frac{\partial^4 u_y}{\partial x^4} - \frac{\rho}{G\kappa} \cdot \frac{\partial^2 \ddot{u}_y}{\partial x^2} + \frac{\rho A}{EI} \cdot \ddot{u}_y + \frac{1}{GA\kappa} \cdot \frac{\partial^2 q_y}{\partial x^2} - \frac{1}{EI} \cdot q_y - \frac{\rho}{EG\kappa} \cdot \frac{\partial^2 \ddot{u}_y}{\partial x^2} + \frac{\rho^2}{EG\kappa} \cdot \ddot{u}_y - \frac{\rho^2}{EG\kappa} \cdot \ddot{q}_y + \frac{1}{EI} \cdot \frac{\partial q_\theta}{\partial x} = 0$$
(2.52)

19

Se cambia la ecuación 2.52 al dominio de la frecuencia y se tiene:

$$\frac{\partial^{4}\bar{u}_{y}}{\partial x^{4}} + \frac{\rho\omega^{2}}{G\kappa} \cdot \frac{\partial^{2}\bar{u}_{y}}{\partial x^{2}} - \frac{\rho A\omega^{2}}{EI} \cdot \bar{u}_{y} + \frac{1}{GA\kappa} \cdot \frac{\partial^{2}\bar{q}_{y}}{\partial x^{2}} - \frac{1}{EI} \cdot \bar{q}_{y} + \frac{\rho\omega^{2}}{E} \cdot \frac{\partial^{2}\bar{u}_{y}}{\partial x^{2}} + \frac{\rho^{2}\omega^{4}}{EG\kappa} \cdot \bar{u}_{y} + \frac{\rho^{2}\omega^{2}}{EG\kappa} \cdot \bar{q}_{y} + \frac{1}{EI} \cdot \frac{\partial\bar{q}_{\theta}}{\partial x} = 0$$
(2.53)

Haciendo el cambio de variable, para hacer que la ecuación 2.53 no dependa de la longitud del pilote, y agrupando términos se tiene:

$$\frac{\partial^{4}\bar{u}_{y}}{\partial\xi^{4}} + \left(\frac{\rho\omega^{2}L^{2}}{G\kappa} + \frac{\rho\omega^{2}L^{2}}{E}\right)\frac{\partial^{2}\bar{u}_{y}}{\partial\xi^{2}} + \left(\frac{\rho^{2}\omega^{4}L^{4}}{EG\kappa} - \frac{\rho A\omega^{2}L^{4}}{EI}\right)\bar{u}_{y} + \frac{L^{2}}{GA\kappa} \cdot \frac{\partial^{2}\bar{q}_{y}}{\partial\xi^{2}} + \left(-\frac{L^{4}}{EI} + \frac{\rho^{2}\omega^{2}L^{4}}{EG\kappa}\right) \cdot \bar{q}_{y} + \frac{L^{3}}{EI} \cdot \frac{\partial\bar{q}_{\theta}}{\partial\xi} = 0$$
(2.54)

Si además, damos nombre a algunas de las constantes observadas, tenemos:

$$\frac{\partial^4 \bar{u}_y}{\partial \xi^4} + \kappa_a^2 \alpha \cdot \frac{\partial^2 \bar{u}_y}{\partial \xi^2} - \kappa_l^4 \beta \cdot \bar{u}_y + \frac{L^2}{GA\kappa} \cdot \frac{\partial^2 \bar{q}_y}{\partial \xi^2} + \frac{L^4}{EI} \beta \cdot \bar{q}_y + \frac{L^3}{EI} \cdot \frac{\partial \bar{q}_\theta}{\partial \xi} = 0$$
 (2.55)

Donde,

$$\kappa_a^2 = \left(\frac{\omega \cdot L}{c_a}\right)^2 \tag{2.56}$$

$$\alpha = \left(1 + \frac{E}{G \cdot \kappa}\right) \tag{2.57}$$

$$\kappa_l^4 = \left(\frac{\omega \cdot L^2}{r_g \cdot c_a}\right)^2 \tag{2.58}$$

$$\beta = \left(1 - \omega^2 \frac{\rho I}{GA\kappa}\right) \tag{2.59}$$

2.3 Resolución analítica

Teniendo en cuenta la expresión analítica de las cargas (2.29, 2.32 y 2.35), haciendo el consabido cambio al dominio de la frecuencia y el cambio de variable ($x = L \cdot \xi$) en ellas y sustituyendolas en la ecuacinón de gobierno (2.55), se obtiene:

$$\frac{\partial^{4}\bar{u}_{y}}{\partial\xi^{4}} + \kappa_{a}^{2}\alpha \cdot \frac{\partial^{2}\bar{u}_{y}}{\partial\xi^{2}} - \kappa_{l}^{4}\beta \cdot \bar{u}_{y} = -\frac{L^{2}}{GA\kappa} \left(-K_{H} \cdot \frac{\partial^{2}\bar{u}_{y}}{\partial\xi^{2}} + K_{H} \cdot \frac{\partial^{2}\bar{u}_{y}}{\partial\xi^{2}} + K_{P} \cdot \frac{\partial^{4}\bar{u}_{y}}{\partial\xi^{4}} \right) + \frac{L^{4}}{EI}\beta \left(-K_{H} \cdot \bar{u}_{y} + K_{H} \cdot \bar{u}_{y}^{I} + K_{P} \cdot \frac{\partial^{2}\bar{u}_{y}}{\partial\xi^{2}} \right) - \frac{L^{3}}{EI} \left(\frac{K_{D}}{L} \cdot \frac{\partial^{2}\bar{u}_{y}^{I}}{\partial\xi^{2}} + K_{R} \cdot \frac{\partial\bar{\theta}}{\partial\xi} \right)$$

$$(2.60)$$

Como la derivada del giro $(\partial \bar{\theta} / \partial \xi)$ es desconocida, se hace necesario hallar la expresión de $\theta(u)$. Partiendo de la ecuación 2.50 e introduciendo 2.29, 2.32 y 2.35, se tiene:

$$\frac{\partial^{3}\bar{u}_{y}}{\partial x^{3}} - \frac{\rho\omega^{2}}{G\kappa} \cdot \frac{\partial\bar{u}_{y}}{\partial x} + \frac{1}{GA\kappa} \left[-K_{H} \left(\frac{\partial\bar{u}_{y}}{\partial x} - \frac{\partial\bar{u}_{y}^{I}}{\partial x} \right) + K_{P} \cdot \frac{\partial^{3}\bar{u}_{y}}{\partial x^{3}} \right] + \frac{GA\kappa}{EI} \left(\frac{\partial\bar{u}_{y}}{\partial x} - \bar{\theta} \right) + \frac{\rho\omega^{2}}{E} \cdot \bar{\theta} - \frac{1}{EI} \left[K_{D} \cdot \frac{\partial\bar{u}_{y}^{I}}{\partial x} + K_{R} \cdot \bar{\theta} \right] = 0$$
(2.61)

Quitando los corchetes y haciendo el cambio de x a ξ , obtenemos:

$$\frac{\partial^{3}\bar{u}_{y}}{\partial\xi^{3}} + \frac{\rho\omega^{2}}{G\kappa} \cdot \frac{\partial\bar{u}_{y}}{\partial\xi} - \frac{L^{2}K_{H}}{GA\kappa} \left(\frac{\partial\bar{u}_{y}}{\partial\xi} - \frac{\partial\bar{u}_{y}^{I}}{\partial\xi} \right) + \frac{K_{P}}{GA\kappa} \cdot \frac{\partial^{3}\bar{u}_{y}}{\partial\xi^{3}} + \frac{GA\kappa L^{2}}{EI} \cdot \frac{\partial\bar{u}_{y}}{\partial\xi} - \frac{GA\kappa L^{2}}{EI} \cdot L\bar{\theta} + \frac{L^{2}K_{R}}{EI} \cdot L\bar{\theta} - \frac{L^{2}K_{D}}{EI} \cdot \frac{\partial\bar{u}_{y}^{I}}{\partial\xi} = 0$$
(2.62)

De donde, tras reordenar los términos, se puede extraer que la expresión del giro, en función de derivadas de \bar{u}_u , es:

$$\bar{\theta} = g3 \cdot \frac{\partial^3 \bar{u}_y}{\partial \xi^3} + g1 \cdot \frac{\partial \bar{u}_y}{\partial \xi} + gI \cdot \frac{\partial \bar{u}_y^I}{\partial \xi}$$
(2.63)

Cuyas constantes se definen tal que:

$$g3 = \frac{1 + \frac{K_P}{GA\kappa}}{\left(\frac{GA\kappa L^2}{EI} + \frac{L^2K_R}{EI}\right)}$$
(2.64)

$$g1 = \frac{\frac{GA\kappa L^2}{EI} - \frac{L^2 K_H}{GA\kappa}}{\left(\frac{GA\kappa L^2}{EI} + \frac{L^2 K_R}{EI}\right)}$$
(2.65)

$$gI = \frac{\frac{L^2 K_H}{GA\kappa} - \frac{L^2 K_D}{EI}}{\left(\frac{GA\kappa L^2}{EI} + \frac{L^2 K_R}{EI}\right)}$$
(2.66)

Una vez hallada la expresión de $\bar{\theta}$, g3, g1 y gI y retomando con la ecuación 2.60, se tiene:

$$\frac{\partial^{4}\bar{u}_{y}}{\partial\xi^{4}} + \kappa_{a}^{2}\alpha \cdot \frac{\partial^{2}\bar{u}_{y}}{\partial\xi^{2}} - \kappa_{l}^{4}\beta \cdot \bar{u}_{y} = \frac{L^{2}K_{H}}{GA\kappa} \cdot \frac{\partial^{2}\bar{u}_{y}}{\partial\xi^{2}} - \frac{L^{2}K_{H}}{GA\kappa} \cdot \frac{\partial^{2}\bar{u}_{y}^{I}}{\partial\xi^{2}} + \\
+ \frac{K_{P}}{GA\kappa} \cdot \frac{\partial^{4}\bar{u}_{y}}{\partial\xi^{4}} - \frac{\beta L^{4}K_{H}}{EI} \cdot \bar{u}_{y} + \frac{\beta L^{4}K_{H}}{EI} \cdot \bar{u}_{y}^{I} + \frac{\beta L^{2}K_{P}}{EI} \cdot \frac{\partial^{2}\bar{u}_{y}}{\partial\xi^{2}} - \\
- \frac{L^{2}K_{D}}{EI} \cdot \frac{\partial^{2}\bar{u}_{y}^{I}}{\partial\xi^{2}} - \frac{L^{2}K_{R}}{EI} \cdot \left[g_{3} \cdot \frac{\partial^{4}\bar{u}_{y}}{\partial\xi^{4}} + g_{1} \cdot \frac{\partial^{2}\bar{u}_{y}}{\partial\xi^{2}} + g_{I} \cdot \frac{\partial^{2}\bar{u}_{y}^{I}}{\partial\xi^{2}}\right]$$
(2.67)

21

2 Formulación del modelo

Reordenando los términos y agrupando:

$$\begin{bmatrix} 1 + \frac{L^2 K_R}{EI} \cdot g_3 - \frac{K_P}{GA\kappa} \end{bmatrix} \cdot \frac{\partial^4 \bar{u}_y}{\partial \xi^4} + \begin{bmatrix} \kappa_a^2 \alpha - \frac{L^2 K_R}{EI} \cdot g_1 - \frac{L^2 K_H}{GA\kappa} - \frac{\beta L^2 K_P}{EI} \end{bmatrix} \cdot \frac{\partial^2 \bar{u}_y}{\partial \xi^2} + \\ + \begin{bmatrix} -\kappa_l^4 \beta + \frac{\beta L^4 K_H}{EI} \end{bmatrix} \cdot \bar{u}_y = \begin{bmatrix} \frac{L^2 K_R}{EI} \cdot g_I - \frac{L^2 K_H}{GA\kappa} - \frac{L^2 K_D}{EI} \end{bmatrix} \cdot \frac{\partial^2 \bar{u}_y^I}{\partial \xi^2} + \begin{bmatrix} \frac{\beta L^4 K_H}{EI} \end{bmatrix} \cdot \bar{u}_y^I$$

$$(2.68)$$

De lo cual se obtiene que:

$$\frac{\partial^4 \bar{u}_y}{\partial \xi^4} + C_2 \cdot \frac{\partial^2 \bar{u}_y}{\partial \xi^2} + C_0 \cdot \bar{u}_y = C_{I2} \cdot \frac{\partial^2 \bar{u}_y^I}{\partial \xi^2} + C_{I0} \cdot \bar{u}_y^I$$
(2.69)

Donde,

$$C_2 = \frac{1}{1 + \frac{L^2 K_R}{EI} \cdot g_3 - \frac{K_P}{GA\kappa}} \cdot \left[\kappa_a^2 \alpha - \frac{L^2 K_H}{GA\kappa} - \frac{L^2 K_R}{EI} \cdot g_1 - \frac{\beta L^2 K_P}{EI}\right]$$
(2.70)

$$C_0 = \frac{1}{1 + \frac{L^2 K_R}{EI} \cdot g_3 - \frac{K_P}{GA\kappa}} \cdot \left[-\kappa_l^4 \beta + \frac{L^4 K_H}{EI} \beta \right]$$
(2.71)

$$C_{I2} = \frac{1}{1 + \frac{L^2 K_R}{EI} \cdot g_3 - \frac{K_P}{GA\kappa}} \cdot \left[\frac{L^2 K_R}{EI} \cdot g_I - \frac{L^2 K_H}{GA\kappa} - \frac{L^2 K_D}{EI}\right]$$
(2.72)

$$C_{I0} = \frac{1}{1 + \frac{L^2 K_R}{EI} \cdot g_3 - \frac{K_P}{GA\kappa}} \cdot \left[\frac{L^4 K_H}{EI}\beta\right]$$
(2.73)

Habiendo obtenido la ecuaciíon general de gobierno con las cargas, se procede a su resolución, hallando la solución particular y la homogénea.

Sustituyendo en la ecuación 2.69 la expresión de la excitación 2.18 y de la solución particular genérica y simplificando, se tiene:

$$B \cdot \left[\left(\frac{L}{D} \right)^4 \cdot (a_0^*)^4 \right] + C_2 \cdot B \cdot \left[- \left(\frac{L}{D} \right)^2 \cdot (a_0^*)^2 \right] + C_0 \cdot B =$$

$$C_{I2} \cdot \frac{1}{2} \cdot \left[- \left(\frac{L}{D} \right)^2 \cdot (a_0^*)^2 \right] + C_{I0} \cdot \frac{1}{2}$$
(2.74)

de lo cual se extrae:

$$B = \frac{1}{2} \cdot \frac{-C_{I2} \cdot (\frac{L}{D})^2 \cdot (a_0^*)^2 + C_{I0}}{(\frac{L}{D})^4 \cdot (a_0^*)^4 - C_2 \cdot (\frac{L}{D})^2 \cdot (a_0^*)^2 + C_0}$$
(2.75)

Por tanto, la solución particular queda:

$$(\bar{u}_y)_P = B \cdot (e^{j \cdot a_0^* \cdot \frac{L}{D} \cdot \xi} + e^{-j \cdot a_0^* \cdot \frac{L}{D} \cdot \xi})$$
(2.76)

Resolviendo ésta vez la ecuación 2.69 para $\bar{u}_y^I = 0$, se obtiene la ecuación característica, de la cual se extrae la expresión de la solución homogénea:

$$\frac{\partial^4 \bar{u}_y}{\partial \xi^4} + C_2 \cdot \frac{\partial^2 \bar{u}_y}{\partial \xi^2} + C_0 \cdot \bar{u}_y = 0$$
(2.77)

$$\lambda_i^4 + C_2 \cdot \lambda_i^2 + C_0 = 0 \tag{2.78}$$

$$\chi_{1,2} = -C_2 \pm \sqrt{(C_2)^2 - 4 \cdot C_0}$$
(2.79)

$$(\bar{u}_y)_H = \sum_{i=0}^{i=4} A_i \cdot e^{\lambda_i \cdot \xi}$$
(2.80)

$$\lambda_{1,2,3,4} = \pm \sqrt{\chi_{1,2}}$$
 (2.81)

donde las A_i son constantes asociadas con cada una de las raíces de la ecuación característica. Para hallar el valor de dichas constantes, se aplican CC. Así, se obtiene un sistema de ecuaciones, que al ser resuelto, nos da los valores de las constantes A_i .

Según se consideren unas CC u otras, el sistema de ecuaciones variará. Se formulan todas las variantes. Véase a continuación:

Ecuación 1

Se refiere al desplazamiento o esfuerzo cortante soportado en la posición $\xi = 0$. En caso de que se conozca el valor de desplazamiento, se tiene la ecuación 2.82

$$\sum_{i=1}^{i=4} A_i \cdot e^{\lambda_i \mathbf{0}} = U_{\mathbf{0}} - B \cdot \left(e^{j \cdot (a)_0^* \cdot \mathbf{0}} + e^{-j \cdot (a)_0^* \cdot \mathbf{0}} \right)$$
$$\sum_{i=1}^{i=4} A_i = U_{\mathbf{0}} - 2 \cdot B$$
(2.82)

Si se conoce el valor del esfuerzo cortante, se tiene la ecuación 2.83

$$\sum_{i=1}^{i=4} A_i \cdot \lambda_i^3 \cdot e^{\lambda_i \mathbf{0}} = -\frac{L^3}{EI} \cdot V_{\mathbf{0}} - B \cdot (j \cdot k_s^3 L^3) \cdot \left(e^{j \cdot (a)_0^* \cdot \mathbf{0}} - e^{-j \cdot (a)_0^* \cdot \mathbf{0}} \right)$$

$$\sum_{i=1}^{i=4} A_i \cdot \lambda_i^3 = -\frac{L^3}{EI} \cdot V_{\mathbf{0}}$$
(2.83)

Ecuación 2

Se refiere al giro o momento flector soportado en la posición $\xi = 0$. En caso de que se conozca el valor de giro, se tiene la ecuación 2.84:

$$\sum_{i=1}^{i=4} A_i \cdot (g_3 \cdot \lambda_i^3 + g_1 \cdot \lambda_i) \cdot e^{\lambda_i \mathbf{0}} = \theta_{\mathbf{0}} \cdot L - \left[B \cdot g_3 (j \cdot k_s L)^3 + (B \cdot g_1 + \frac{g_I}{2}) (j \cdot k_s L) \right] \left(e^{j \cdot (a)_0^* \cdot \mathbf{0}} - e^{-j \cdot (a)_0^* \cdot \mathbf{0}} \right)$$
$$i=4$$

$$\sum_{i=1}^{i=4} A_i \cdot (g_3 \cdot \lambda_i^3 + g_1 \cdot \lambda_i) = \theta_{\mathbf{0}} \cdot L$$
(2.84)

Si se conoce el valor del momento flector, se tiene la ecuación 2.85:

$$\sum_{i=1}^{i=4} A_i \cdot (g_3 \cdot \lambda_i^4 + g_1 \cdot \lambda_i^2) \cdot e^{\lambda_i \mathbf{0}} = \frac{L^2}{EI} \cdot M_0 - B \cdot (j \cdot k_s^2 L^2) \cdot \left(e^{j \cdot (a)_0^* \cdot \mathbf{0}} + e^{-j \cdot (a)_0^* \cdot \mathbf{0}} \right)$$

$$\sum_{i=1}^{i=4} A_i \cdot (g_3 \cdot \lambda_i^4 + g_1 \cdot \lambda_i^2) = \frac{L^2}{EI} \cdot M_0 - 2 \cdot (j \cdot k_s^2 L^2) \cdot B$$
(2.85)

Ecuación 3

Se refiere al desplazamiento o esfuerzo cortante soportado en la posición $\xi = 1$. En caso de que se conozca el valor de desplazamiento, se tiene la ecuación 2.86:

$$\sum_{i=1}^{i=4} A_i \cdot e^{\lambda_i \mathbf{1}} = U_{\mathbf{1}} - B \cdot \left(e^{j \cdot (a)_0^* \cdot \mathbf{1}} + e^{-j \cdot (a)_0^* \cdot \mathbf{1}} \right)$$
$$\sum_{i=1}^{i=4} A_i \cdot e^{\lambda_i} = U_1 - B \cdot \left(e^{j \cdot (a)_0^*} + e^{-j \cdot (a)_0^*} \right)$$
(2.86)

Si se conoce el valor del esfuerzo cortante, se tiene la ecuación 2.87 :

$$\sum_{i=1}^{i=4} A_i \cdot \lambda_i^3 \cdot e^{\lambda_i \mathbf{1}} = -\frac{L^3}{EI} \cdot V_{\mathbf{1}} - B \cdot (j \cdot k_s^3 L^3) \cdot \left(e^{j \cdot (a)_0^* \cdot \mathbf{1}} - e^{-j \cdot (a)_0^* \cdot \mathbf{1}} \right)$$
$$\sum_{i=1}^{i=4} A_i \cdot \lambda_i^3 \cdot e^{\lambda_i} = -\frac{L^3}{EI} \cdot V_1 - B \cdot (j \cdot k_s^3 L^3) \cdot \left(e^{j \cdot (a)_0^*} - e^{-j \cdot (a)_0^*} \right)$$
(2.87)
Ecuación 4

Se refiere al desplazamiento o esfuerzo cortante soportado en la posición $\xi = 1$. En caso de que se conozca el valor de giro, se tiene la ecuación 2.88:

$$\sum_{i=1}^{i=4} A_i \cdot (g_3 \cdot \lambda_i^3 + g_1 \cdot \lambda_i) \cdot e^{\lambda_i \mathbf{1}} = \theta_{\mathbf{1}} \cdot L - \left[B \cdot g_3 (j \cdot k_s L)^3 + (B \cdot g_1 + \frac{g_I}{2})(j \cdot k_s L) \right] \left(e^{j \cdot (a)_0^* \cdot \mathbf{1}} - e^{-j \cdot (a)_0^* \cdot \mathbf{1}} \right)$$

$$\sum_{i=1}^{i=4} A_i \cdot (g_3 \cdot \lambda_i^3 + g_1 \cdot \lambda_i) \cdot e^{\lambda_i} = \theta_1 \cdot L - \left[B \cdot g_3 (j \cdot k_s L)^3 + (B \cdot g_1 + \frac{g_I}{2}) (j \cdot k_s L) \right] \left(e^{j \cdot (a)_0^*} - e^{-j \cdot (a)_0^*} \right)$$
(2.88)

Si se conoce el valor del momento flector, se tiene la ecuación 2.89

$$\sum_{i=1}^{i=4} A_i \cdot (g_3 \cdot \lambda_i^4 + g_1 \cdot \lambda_i^2) \cdot e^{\lambda_i \mathbf{1}} \cdot m = \frac{L^2}{EI} \cdot M_{\mathbf{1}} - B \cdot (j \cdot k_s^2 L^2) \cdot \left(e^{j \cdot (a)_0^* \cdot \mathbf{1}} + e^{-j \cdot (a)_0^* \cdot \mathbf{1}} \right)$$

$$\sum_{i=1}^{i=4} A_i \cdot (g_3 \cdot \lambda_i^4 + g_1 \cdot \lambda_i^2) \cdot e^{\lambda_i} = \frac{L^2}{EI} \cdot M_1 - B \cdot (j \cdot k_s^2 L^2) \cdot \left(e^{j \cdot (a)_0^*} + e^{-j \cdot (a)_0^*} \right)$$
(2.89)

En nuestro caso concreto, tal como se explica en el apartado dedicado a explicar las CC, se ha decidido impedir el giro y aplicar un desplazamiento igual a la unidad en $\xi = 0$, mientras que se anula el cortante y el flector en $\xi = 1$. Por ello, para formar nuestro sistema de ecuaciones, tomamos las ecuaciones 2.82, 2.84, 2.87 y 2.89.

Ahora sí, teniedo el sistema y, por tanto, siendo conocidas las constantes, tenemos la solución fundamental. De ésta manera, sumando la solución homogénea (ecuación 2.80) y la particular (ecuacioón 2.76), la solución general queda completamente definida.

2.4 Variables de salida del modelo

Una vez calculadas la solución homogénea y particular de \bar{u}_y , podemos definir las variables de salida del modelo.

De manera que el desplazamiento sería la solución general de la ecuación de gobierno. El giro, lo obtenido de sustituir el desplazamiento en la ecuación 2.63. Al cortante y al flector, sin embargo, hay que darles expresión.

Partiendo de las ecuaciones 2.9 y 2.10, aplicando $\xi = x/L$ y cambiando al dominio de la frecuencia

$$\bar{V}_{dim} = \frac{\kappa AG}{L} \cdot \left(\frac{\partial \bar{u}_y}{\partial \xi} - \bar{\theta}\right)$$
(2.90)

$$\bar{M}_{dim} = \frac{EI}{L} \cdot \frac{\partial \theta}{\partial \xi}$$
(2.91)

Ahora, haciendo algunos cambios en los términos de 2.90 y 2.91, se puede observar:

$$\bar{V}_{dim} = ED \cdot f \cdot \left(\frac{\partial \bar{u}_y}{\partial \xi} - \bar{\theta}\right)$$
(2.92)

$$\bar{M}_{dim} = ED^2 \cdot f \cdot \frac{\partial \bar{\theta}}{\partial \xi}$$
(2.93)

Donde $f = \left(\frac{r_g}{D}\right)^2 \left(\frac{A}{D^2}\right) \left(\frac{D}{L}\right)^2$. Así pues, reuniendo las soluciones para todas las variables, se tiene:

$$\bar{u}_{y} = \sum_{i=0}^{i=4} A_{i} \cdot e^{\lambda_{i} \cdot \xi} + B \cdot (e^{j \cdot k_{s} \cdot \xi} + e^{-j \cdot k_{s} \cdot \xi})$$

$$\bar{\theta} = \sum_{i=0}^{i=4} A_{i} \cdot (q_{3}\lambda_{i}^{3} + q_{1}\lambda_{i}) \cdot e^{\lambda_{i} \cdot \xi} +$$
(2.94)

$$\bar{V} = \sum_{i=0}^{i=4} A_{i} \left((g_{3} \cdot (jk_{s})^{3} + jk_{s}(g_{1} + \frac{1}{2}) \right) \cdot (e^{j \cdot k_{s} \cdot \xi} - e^{-j \cdot k_{s} \cdot \xi})$$

$$\bar{V} = \sum_{i=4}^{i=4} A_{i} \left((g_{1})^{3} + (g_{1})^{3} + (g_{2})^{3} + (g_{2})^{3}$$

$$V = \sum_{i=0}^{i=0} A_i \cdot f \cdot (g_3 \lambda_i^2 + g_1 \lambda_i) \cdot e^{i\xi \cdot \xi} +$$

$$+ B \cdot f \cdot \left[g_3 \cdot (jk_s)^3 + jk_s (g_1 + \frac{3}{2}) \right] \cdot (e^{j \cdot k_s \cdot \xi} - e^{-j \cdot k_s \cdot \xi})$$

$$\bar{M} = \sum_{i=0}^{i=4} A_i \cdot f \cdot (g_3 \lambda_i^4 + g_1 \lambda_i^2) \cdot e^{\lambda_i \cdot \xi} -$$
(2.96)
(2.96)
(2.97)

$$- B \cdot f \cdot \left[g_3 \cdot (jk_s)^4 + (jk_s)^2 (g_1 + \frac{1}{2}) \right] \cdot \left(e^{j \cdot k_s \cdot \xi} + e^{-j \cdot k_s \cdot \xi} \right)$$

de manera que se formulan para que den valores adimensionales. Ésto se hace para poder comparar lo resultados obtenidos con distintas configuraciones.

Si, por el contrario, se busca el valor de la variable con su dimensión, hace falta entonces aplicar el factor adecuado, según el caso:

$$\bar{u}_{y,dim} = \bar{u}_y \tag{2.98}$$

$$\bar{\theta}_{dim} = \bar{\theta} \cdot \frac{1}{L} \tag{2.99}$$

$$\bar{V}_{dim} = \bar{V} \cdot E D \tag{2.100}$$

$$\bar{M}_{dim} = \bar{M} \cdot E D^2 \tag{2.101}$$

Nótese que en el desplazamiento, concretamente y tal y como se plantea el problema, coincide con la solución general a la ecuación de gobierno debido a las CC escogidas.

VERIFICACIÓN DEL MODELO

Para validar el modelo que se presenta es necesario una estimación de la calidad de los datos de salida del mismo. Para ello, se realiza una comparación entre éstos y los obtenidos con un modelo de referencia adecuado para el caso, que se expone a continuación.

3.1 Modelo de referencia: BEM-BEM

El modelo de referencia necesita ser preciso, fiable y estar disponible para su uso. Dentro del propio Grupo, la Divisiń de Mecánica de los Medios Continuos y Estructuras del SIANI, se ha desarrollado un modelo basado en el MEC. Dicho modelo (nótese que nos referiremos al modelo como BEM-BEM y al método, como MEC), se usa para obtener la solución de referencia, por su capacidad para dar una solución del problema rigurosa en cuanto a la mecánica del medio continuo.

Además, el modelo cuenta con el respaldo de la investigación previa realizada por el Grupo, que cuenta con publicaciones tales como [1], [3], que se usan de referencia (Véase la bibliografía). Se considera, por tanto, demostrada su fiabilidad y se propone, para el caso en el que se desee más material al respecto, consultar la página web del Grupo: http://www.mmc.siani.es/publications/.

En el caso del BEM-BEM que se usa en el presente PFC, se plantea un MEC multiregión de resolución directa. Se detalla a continuación:

Planteamiento teórico inicial

Se representan los desplazamientos y tensiones en el contorno Γ en el dominio Ω con la ecuación integral siguiente, aplicada en el punto *i* (de coordenadas x^i) y en la que se consideran nulas las fuerzas de volumen:

$$c_{lk}^{\mathbf{i}} u_k^{\mathbf{i}} + \int_{\Gamma} t_{lk}^* u_k \, d\Gamma = \int_{\Gamma} u_{lk}^* t_k \, d\Gamma \tag{3.1}$$

donde las integrales sobre Γ se deben entender en el sentido del Valor Principal de Cauchy (VPC); c_{lk}^{i} es un término independiente que toma un valor u otro en función de

si el punto *i* está o no en el contorno, u_k^i y t_k^i representan las componentes en dirección *k* de los desplazamientos y tracciones en puntos de Γ , siendo u_{lk}^* y t_{lk}^* la solución fundamental en desplazamientos y tensiones respectivamente, para los mismos puntos, en la dirección *k* cuando una carga puntual actúa en la dirección *l* en el punto *i*. La ecuación 3.1 es válida tanto para problemas estáticos como dinámicos, si bien en cada caso difiere la expresión de la solución fundamental. Dicha ecuación integral, se resuelve de manera numérica (estrategia de resolución directa) [3].

A partir de la ecuación integral, discretizando el problema, se construye un sistema de ecuaciones lineales, con el que se puede obtener los desplazamientos y tensiones en el contorno, a priori desconocidos. El campo incidente se incluye planteando las ecuaciones integrales en términos de campo difractado [3]. Se tiene entonces:

$$H\left(u-u^{I}\right) = G\left(t-t^{I}\right) \tag{3.2}$$

donde *H* y *G* son las matrices de influencia, *u* y *t* son los desplazamientos y tensiones del campo total, y u^I y t^I son desplazamientos y tensiones del campo incidente, con expresión analítca 2.20. De ésta manera, los desplazamientos y tensiones a través de $\partial\Omega_{\alpha}$ se relacionan también con las matrices de influencia del MEC.

Condiciones de contacto

Sean Ω_{α} y Ω_{β} dos regiones en contacto a través de la interfase Γ_j . Dicha interfase Γ_j tiene dos caras: Γ_{j_+} y Γ_{j_-} , cuyas orientaciones son compatibles respectivamente con las regiones Ω_{α} y Ω_{β} . Los contornos de ambas regiones son entonces $\partial\Omega_{\alpha} = \Gamma_{j_+} \cup \Gamma_i$ y $\partial\Omega_{\beta} = \Gamma_{j_-} \cup \Gamma_k$. Los desplazamientos y tensiones a través de $\partial\Omega_{\alpha}$ se relacionan con las matrices de influencia del MEC, por lo que:

$$\begin{bmatrix} H_{i,i} & H_{i,j_{+}} \\ H_{j_{+},i} & H_{j_{+},j_{+}} \end{bmatrix} \begin{cases} u_{i} \\ u_{j_{+}} \end{cases} = \begin{bmatrix} G_{i,i} & G_{i,j_{+}} \\ G_{j_{+},i} & G_{j_{+},j_{+}} \end{bmatrix} \begin{cases} t_{i} \\ t_{j_{+}} \end{cases}$$
(3.3)

El sistema para $\partial \Omega_{\beta}$ se construiría de forma análoga.

Por otro lado, el contacto puede considerarse suave o soldado. En nuestro caso, se considera soldado, por lo que las condiciones de compatibilidad y equilibrio son $u_{j_+} = u_{j_-}$ y $t_{j_+} + t_{j_-} = 0$. con ellos, se llega a un sistema de ecuaciones lineales, tal que:

$$\begin{array}{cccc} H_{i,i} & H_{i,j_{+}} & -G_{i,j_{+}} & \varnothing \\ H_{j_{+},i} & H_{j_{+},j_{+}} & -G_{j_{+},j_{+}} & \varnothing \\ \varnothing & H_{j_{-},j_{-}} & G_{j_{-},j_{-}} & H_{j_{-},k} \\ \varnothing & H_{k,j_{-}} & G_{k,j_{-}} & H_{k,k} \end{array} \right] \left\{ \begin{array}{c} u_{i} \\ u_{j_{+}} \\ t_{j_{+}} \\ u_{k} \end{array} \right\} = \left[\begin{array}{c} G_{i,i} & \varnothing \\ G_{j_{+},i} & \varnothing \\ \varnothing & G_{j_{-},k} \\ \varnothing & G_{k,k} \end{array} \right] \left\{ \begin{array}{c} t_{i} \\ t_{k} \end{array} \right\}$$
(3.4)

el cual debe ser entendido como una parte del sistema completo si existiesen más regiones o contornos.

Tensión resultante de la sección transversal

La solución en un punto *i* de coordenadas x^i dentro del dominio Ω se obtiene de la ecuación integral singular interior (Es decir, sustituyendo $c_{lk}^i = \delta_{lk}$ en 3.1, siendo δ_{lk} una delta de Dirac) y sus derivadas, en una fase de post-procesado.

Con la integral hipersingular (interior Hypersingular Boundary Integral Equation, HBIE), en cambio, habiendo obtenido los tensores de tensión σ_{lk}^{i} y deformación ϵ_{lk}^{i} con una combinación adecuada de las derivadas de la respuesta, se calcula la tracción $t_{l}^{i} = \sigma_{lk}^{i} n_{k}^{i}$ en el punto de coordenada x^{i} . Su expresión es:

$$t_l^{\mathbf{i}} = \int_{\partial\Omega} d_{lk}^* t_k \,\mathrm{d}\Gamma - \int_{\partial\Omega} s_{lk}^* u_k \,\mathrm{d}\Gamma, \quad l,k = 1,2,3$$
(3.5)

donde u_k y t_k son ya conocidos, y d_{lk}^* y s_{lk}^* son soluciones fundamentales hipersingulares, que pueden encontrarse en cualquier parte (Véase [3]).

Cada sección transversal del pilote \mathcal{X} es una superficie orientada discretizada en $N_{\mathcal{X}}$ elementos. Cada elemento interno \mathcal{E} de orden R sirve de soporte para un conjunto de puntos internos localizados en los puntos de integración de una cuadratura gaussiana de mismo orden.

Sean, pues, $N_{\mathcal{R}}$ el número de puntos de integración de la cuadratura gaussiana, η_j y w_j el *j*-ésimo punto de cuadratura y peso. Entonces las fuerzas y momentos cartesianos con respecto a \mathbf{x}_c son:

$$\mathbf{F}_{\mathcal{E}} = \int_{\mathcal{E}} \mathbf{t} \, \mathrm{d}S \cong \sum_{j=1}^{j=N_{\mathcal{R}}} \mathbf{t}^{\mathrm{i}}\left(\boldsymbol{\eta}_{j}\right) J\left(\boldsymbol{\eta}_{j}\right) w_{j}$$

$$\mathbf{M}_{\mathcal{E}} = \int_{\mathcal{E}} \left(\mathbf{x} - \mathbf{x}_{c}\right) \times \mathbf{t} \, \mathrm{d}S \cong \sum_{j=1}^{j=N_{\mathcal{R}}} \left[\mathbf{x}\left(\boldsymbol{\eta}_{j}\right) - \mathbf{x}_{c}\right] \times \mathbf{t}^{\mathrm{i}}\left(\boldsymbol{\eta}_{j}\right) J\left(\boldsymbol{\eta}_{j}\right) w_{j}$$
(3.6)

donde *J* es el Jacobiano de la superficie. Finalmente, las tensiones resultantes de la sección transversal son:

$$\mathbf{F}_{\mathcal{X}} = \sum_{\mathcal{X}} \mathbf{F}_{\mathcal{E}}, \quad \mathbf{M}_{\mathcal{X}} = \sum_{\mathcal{X}} \mathbf{M}_{\mathcal{E}}$$
 (3.7)

Discretización del problema

Cómo discretizar el dominio Ω puede cambiar el tiempo y recursos necesarios para implementar el modelo, así como la precisión y veracidad de los datos de salida. Por ello, lo más inteligente es explotar todo posible factor que aumente la efectividad de la implementación.

Así, se aprovechan las propiedades de simetría geométrica y funcional presentes en éste problema. Suponiendo la excitación como una onda incidente en la dirección x_1 , se aplican condiciones de simetría en el plano $x_3 - x_1$ y condiciones de antisimetría en el plano $x_2 - x_3$. De ésta manera, se puede reducir el problema, en lo que se refiere a la resolución, a un cuarto del original. Véase, para una mejor comprensión, la figura 3.1.

Figura 3.1: Mallas MEC multiregión: (Izquierda) Perspectiva de la malla usada, describiendo un cuarto del dominio (Derecha) Detalle sección transversal del pilote, con secciones intermedias.

3.2 Estimación del error

El modelo necesita de un respaldo para poder darle el visto bueno, lo cual se consigue comparando los datos de salida con los del modelo de referencia y viendo que son aceptablemente parecidos unos y otros. Así, se hace una estimación de la calidad de los datos obtenidos de manera objetiva; que además ayuda a entender mejor el compotamiento del modelo mismo, al responder a qué pasaría si se introducen otros datos de entrada, o en qué variables de salida se nota más, entre otras posibles cuestiones.

Por ello, la forma en que se decide estudiar dicha estimación es un factor crítico, tanto para justificar la validez del modelo, como entender el comportamiento del modelo o para la identificación del valor óptimo de S_P , siendo éste el parámetro de Pasternak adimensional.

Para empezar, poder comparar resultados para distintas frecuencias y configuraciones físicas hace necesario normalizar los valores de error, es decir, que éste deberá ser relativo. La cuestión pasa a ser entonces qué valor escoger para normalizar. A priori, se piensan las siguientes opciones:

Tipo de error 1

Se toma el valor absoluto del valor que toma la variable según el modelo BEM-BEM para un determinado punto del pilote y frecuencia.

$$m^{NOR}(\omega,\xi) = |m^{BEM}(\omega,\xi)|$$
(3.8)

Donde $m^{NOR}(\omega,\xi)$ es el valor normalizador de una variable para un punto del pilote y frecuencia dados, $m^{BEM}(\omega,\xi)$ es el valor de la variable según el modelo BEM-BEM para dicho punto del pilote y frecuencia, ξ es la posición en el pilote y ω es la frecuencia estudiada.

Tipo de error 2

Ahora, el valor normalizador es el máximo valor que toma la variable dada según el modelo BEM-BEM a lo largo del pilote para una determinada frecuencia.

$$m^{NOR}(\omega) = (\mid m^{BEM}(\omega,\xi) \mid)_{max}$$
(3.9)

Tipo de error 3

En éste caso, el valor toma la diferencia entre el máximo y el mínimo valor, según el modelo BEM-BEM, que toma una variable dada a lo largo del pilote y para una frecuencia determinada.

$$m^{NOR}(\omega) = |(m^{BEM}(\omega,\xi))_{max} - (m^{BEM}(\omega,\xi))_{min}|$$
 (3.10)

Así, escoger un tipo de error u otro, según el valor con el que se normalice, lo que consigue es resaltar más las diferencias entre los datos de referencia y los propios de diferentes maneras. Se hace necesario pues plantear unas prioridades que supongan a posteriori una ventaja para evaluar el modelo e identificar el S_P adecuado.

Escoger un error relativo es necesario por lo ya dicho, pero existe la posibilidad de que por medirlo comparativamente, parezcan igual de lejanos dos pares de valores proporcionalmente igual de distantes entre sí, aun si hay varios órdenes de magnitud de diferencia entre una y otra pareja. Sirva de ejemplo decir que un 2% puede ser tanto 2 de cada 100 como 2000 de entre 100000. La proporción es la misma; el error absoluto, no.

De ésta manera, optar por un valor normalizador que represente un intervalo de valores posibles, no conflictivos, es la solución. Por esa descripción ya se descartan los errores *tipo 1 y 2*, quedando el *tipo 3*.

Por lo expuesto, se considera adecuado optar por el tipo de error número 3, es decir, el que toma como referencia la diferencia en términos absolutos entre el mayor y el menor valor de la variable de salida a lo largo del pilote, para una determinada frecuencia.

Una vez decidido el valor que se usa para normalizar la medida de error, se hace necesario resaltar que, si bien se podrían calcular valores de error para cada punto de la longitud del pilote; a posteriori, identificando el parámetro S_P , no resulta práctico, pues se pretende encontrar un valor para S_P que sintetice la respuesta en toda la longitud estudiada. Ésto se debe a que así la formulación final del modelo es más sencilla y porque no existe evidencia de que pueda depender de la longitud del pilote.

No hay que perder de vista que, aunque en nuestro caso se opte por sintetizar los errores a lo largo del pilote en un valor, puede ser interesante estudiar en otro momento los valores de error más detenidamente. Por ejemplo, para estudiar qué tanto puede afectar la profundidad a la que se encuentre un punto de estudio en los resultados a obtener, y su error respecto al modelo de refernecia.

De ésta manera, se decide calcular un error normalizado, que se representa analíticamente (suponiendo un $m^{NOR}(\omega,\xi)$ genérico) en la ecuación 3.11:

$$E(\omega,\xi) = \frac{1}{N_{\xi}} \sum_{\xi} \frac{|m^{AN}(\omega,\xi) - m^{BEM}(\omega,\xi)|}{m^{NOR}(\omega)}$$
(3.11)

donde $m^{AN}(\omega,\xi)$ es el valor que toma la variable en estudio según el modelo analítico (ya sea el Winkler o Pasternak) para un punto del pilote y frecuencia dados y N_p es el número de puntos a lo largo del pilote.

3 Verificación del modelo

Sustituyendo en la ecuació 3.11 la expresión del $m^{NOR}(\omega)$ escogido (ecuación 3.10), se tiene, finalmente:

$$E(\omega,\xi) = \frac{1}{N_{\xi}} \sum_{\xi} \frac{|m^{AN}(\omega,\xi) - m^{BEM}(\omega,\xi)|}{|m^{BEM}_{max}(\omega,\xi) - m^{BEM}_{min}(\omega,\xi)|}$$
(3.12)

Capítulo 4

IMPLEMENTACIÓN

Para poder probar el modelo, hace falta implementarlo. En éste capítulo se explica la lógica seguida a la hora de implementar cada una de las partes del proyecto.

Hay dos bloques a éste respecto: el modelo numérico BEM-BEM, por un lado, y lo demás. A continuación, se detalla el procedimiento seguido para implementar cada uno.

4.1 Modelo de referencia BEM-BEM

Como se menciona anteriormente, el modelo BEM-BEM utilizado fue desarrollado por el Grupo.

El programa, escrito en lenguaje FORTRAN, necesita un fichero con los datos de la configuración del problema (*.dat*) y dos ficheros con las mallas que define la geometría a ensayar (*.msh*). La salida la conforman otros dos ficheros de datos, (*.dat.nso* y *.dat.tot*).

El fichero de entrada *.dat* contiene datos tales como las propiedades físicas de interés de suelo y pilote, frecuencias a estudiar, CC... lo necesario para caracterizar el problema.

La malla, en cambio, se genera en el programa GMSH. Se selecciona el tamaño de malla según la frecuencia que se desea testear, así como otros parámetros relacionados directamente con la geometría a estudiar. En nuestro caso, como se menciona anteriormente, se aprovecha la simetría radial, construyendo una maya equivalente a un cuarto del problema.

Los ficheros de datos de salida contienen mucha información, acerca de las frecuencias, índice y valor; las características geométricas del pilote, región, clase y tipo, así como el contorno, clase y cara de las superfícies limítrofes, y los desplazamientos, giros y esfuerzos, proyectados en los ejes directores de cada superficie. Éstos últimos, en notación polar, dependen de la región, clase y tipo.

Por ello, necesitan un post-procesado para facilitar su posterior uso, extrayendo de éstos los valores de cada variable de salida por separado. Posteriormente, se almacenan los datos en estructuras dentro de MatLab, cumpliendo entonces una función parecida a la de una base de datos, de cara a la elaboración de errores para evaluar el modelo analítico.

Para todo ello, y teniendo los datos de salida, se escriben unos filtros BASH y se ejecutan en un simulador de Unix para Windows, llamado Cygwin. Ésto último se hace necesario desde el momento en el que, siendo lo habitual en el Grupo, no se trabaja en Linux, sino en Windows.

Se ha considerado adecuado utilizar estos programas por su disponibilidad, pues ambos se usan frecuentemente en la división (salvo Cygwin), y por su facilidad de uso.

4.2 Modelo analítico, error y optimización

El Grupo cuenta con código ya escrito para calcular la respuesta del modelo analítico, tanto Winkler como Pasternak. Sin embargo, se implementa un código aparte, al que se añade el cálculo del error y la optimización de S_P .

Todo ello se lleva a cabo en MatLab, por ser un software ampliamente conocido, que permite una rápida adaptación al entorno para quien no conoce en profundidad el lenguaje. Resulta sencillo también el manejo de datos, permitiendo la entrada y salida en ficheros de datos (*.dat* o *.txt*), o la salida en gráficas (*.eps*).

Así, los datos de entrada en general se escriben directamente en los parámetros de entrada del programa (sería posible implementarlo de forma que se hiciera desde un fichero si se quisiera); salvo los datos obtenidos del modelo BEM-BEM, que se obtienen en un programa aparte y se cargan desde ficheros de datos ya tratados, como se explica en el apartado anterior. Para los datos de salida, en cambio, se deja abierta la posibilidad desde los parámetros de entrada de guardarlos en ficheros o gráficas, según interese.

Por otro lado, en la figura 4.1 se muestra esquemáticamente el proceso llevado a cabo para determinar el valor óptimo de S_P , que implica el cálculo de los demás datos de interés. Véase:

Figura 4.1: Proceso de optimización del modelo, identificando el S_P que minimiza el error.

Como se puede apreciar, el proceso completo consta de 5 fases, que se tratan con más detalle a continuación:

Fase 1.

Se parte de unos datos de entrada, que caracterizan la configuración y fenómenos físicos a tener en cuenta (si incluir cabeceo y/o tensiones rasantes, o no, por ejemplo) del problema; así como otros parámetros para definir el comportamiento del algoritmo, como el número de frecuencias a estudiar o el tipo de proceso de cálculo a seguir en la optimización.

Fase 2.

Siendo los datos de entrada conocidos (Si se trata de la primera iteración, se supone $S_P = 0$), se llama de forma paralela a dos funciones, que devuelven la respuesta en desplazamiento, giro, tensión y flector del pilote según el modelo analítico, en una rama, y el modelo BEM-BEM, en la otra. Los datos obtenidos se almacenan en ambos casos.

Fase 3.

Teniendo los datos de salida para ambos modelos, se comparan calculando el error, tal como se plantea en el apartado correspondiente. Se almacenan los datos obtenidos de error y se comprueba si son mínimos. En caso contrario, se vuelve a iniciar desde la *Fase 2*, con distinto S_P . Una vez se encuentra el error mínimo, se considera encontrado el valor óptimo de S_P .

Nótese que, como se dice en el apartado previamente, en lo que se refiere al modelo analítico, la diferencia entre un modelo Winkler y Pasternak radica en si $S_P = 0$ o no, lo cual es muy conveniente a la hora de implementar ambos modelos. Vasta con anular el parámetro de entrada, sin crear ninguna función aparte, garantizando que se sigue paso a paso el mismo código y que la diferencia que existiese entre usar $S_P = 0$ o no vendrá puramente de lo que se haga con dicho parámetro en la entrada.

Fase 4.

Teniendo en cuenta que la optimización se realiza minimizando para una variable, se recalcula el resto de variables de salida con el ya S_P óptimo, en caso de ser necesario (si se identifica el valor por *barrido*).

Fase 5.

Se acumulan los datos definitivos. Se les realiza post-procesado y/o representación, de nuevo, en caso de ser necesario. Se finaliza el proceso.

De ésta manera, se utiliza un fichero central que supone la columna vertebral, donde se recoge en esencia el proceso explicado y desde el cual se llama a funciones que resuelven lo requerido en casa fase.

En la minimización del error (o directamente, optimización), en concreto, se contrasta lo obtenido pudiendo utilizar distintos procecimientos para el cálculo. Así, es posible identificar el error mínimo por barrido o usando la función *fmincon*. A continuación se detallan los dos procesos utilizados:

4.2.1 Minimización por barrido

Consiste en acumular los datos de salida del modelo analítico, del modelo BEM-BEM y de error para un vector de valores para S_P , predeterminados desde el inicio del programa

en la *Fase 1*. En dicho vector consta como valor inicial $S_P = 0$ siempre, para asegurar que se comparan los modelos Winkler y Pasternak.

Es un método muy sencillo, lejos de ser el óptimo, pero adecuado para confirmar que la función *fmincon* funciona, pues existía el riesgo de que ésta confundiese un mínimo local con el mínimo global de la función. Siendo tan radicalmente distinto el procedimiento y confirmando los resultados, dicho peligro desaparece.

4.2.2 Minimización usando fmincon

La función *fmincon*, en cambio, se escoge por su ideoneidad para el trabajo a realizar. Viene incluida en el paquete de optimización de MatLab, es versátil y permite tener cierto control sobre su comportamiento: escogiendo el algoritmo de cálculo, especificando la escala del problema, escogiendo cómo hallar la sensibilidad del parámetro a minimizar, los límites de operación, etc. Las escogidas fueron las siguientes:

• Límite inferior: $-1 \cdot 10^{-15}$

Se escoge un valor muy pequeño y negativo, con el objetivo de que la función estudie valores naturales pasando por 0. El detalle es importante, pues el intervalo de estudio es cerrado; por lo que de seleccionar como límite inferior el valor 0, la función no ensayaría el modelo Winkler.

• Límite superior: *Inf*

Si bien no se introducen otras restricciones, los límites en los que opera la función deben ser especificados. En nuestro caso, desconociendo un valor máximo que pudiese alcanzar S_P , se aconseja desde la propia Ayuda de Matlab indicar directamente el límite como Inf.

Sensibilidad: Diferencias finitas centradas

El cálculo, cuando no se aporta directamente unos valores obtenidos de forma analítica o se especifica otro método, se hace por defecto con diferencias finitas hacia delante. En nuestro caso se usa las diferencias finitas centradas por su capacidad para dar resultados más precisos, pues el programa es suficientemente rápdo como para no notar diferencia en la carga computacional extra que supone.

Existen más opciones disponibles, pero con esas es suficiente para que la función encuentre el mínimo absoluto del error y registre el S_P usado para obtener el mismo.

Capítulo 5

RESULTADOS

Una vez formulado el modelo e implementado, se prueba hallando la solución para problemas con un rango de propiedades y dimensiones de interés práctico. Se presentan los resultados que se consideran más relevantes.

5.1 Casos estudiados: configuraciones físicas

Una vez explicado el modelo y la medida del error que se considera adecuado realizar; el último requisito necesario antes de poder obtener números y cuantificar si se ha llegado a buen puerto es decidir qué tantas configuraciones físicas probar, así como qué factores variar entre un caso y otro.

De ésta manera, se considera adecuado estudiar el problema haciendo combinaciones con distintos valores de la relación de esbeltez (L/D), la relación entre los modulos de Young de suelo y estructura (E_p/E_s) y el coeficiente de Poisson del terreno (ν) . Si se da 3 valores diferentes para cada parámetro, se tienen 27 casos diferentes de estudio, donde todos tienen en común lo presentado en la tabla 5.1.

Diámetro del pilote	$D_P = 0.6 \; (m)$
Módulo de Young del pilote	$E_P = 30 \text{ (GPa)}$
Relación de densidades	$\rho_{suelo}/\rho_{pilote} = 0.7$
Coeficiente de Poisson del pilote	$\nu_P = 0.25$
Coef. de amortiguamiento del suelo	$\xi_s = 0.05$
Factor de cortante	fc = 0.882352941
Número de frecuencias	nw = 15
Número de puntos en el pilote	np = 42

Tabla 5.1: Datos constantes en todas las configuraciones físicas ensayadas.

Por otro lado, a la relación de esbeltez (L/D), la relación entre los modulos de Young de suelo y estructura (E_p/E_s) y el coeficiente de Poisson del terreno se le asignan los valores que se ven en la tabla 5.2.

L/D	E_p/E_s	ν
10	50	0.30
15	100	0.40
20	200	0.49

Tabla 5.2: Datos que varían según la configuración físicas que se ensaye.

5.2 Respuesta de los modelos Winkler y Pasternak

El punto inicial del presente PFC es proveer de prueba empírica para demostrar que con un modelo Pasternak, convenientemente identificado el parámetro S_P , mejora sustancialmente los resultados respecto a uno Winkler.

Una vez obtenidos los datos de salida, se comparan. Se observa lo siguiente:

5.2.1 Dependiendo de la frecuencia

Según sea la frecuencia de excitación, la respuesta varía. Se han testeado 15 frecuencias, de las cuales se escoge las más representativas, como se muestra en las figuras 5.1, 5.2, 5.3 y 5.4.

Así, se fijan los ejes atendiendo a cuáles son los valores máximos obtenidos. Por ello, los valores de las frecuencias bajas se ven prácticamente constantes. En conparación lo son, aunque con una mirada más próxima se aprecia que no son curvas puramente constantes.

Si nos fijamos en las figuras 5.3 y 5.4 se observa, en cambio, cómo la respuesta aumenta su frecuencia de oscilación, así como el ajuste del modelo Pasternak a lo obtenido con el BEM-BEM. Sin embargo, se ve que en $\xi = -1$ el desplazamiento y el giro obtenidos con los modelos analíticos se alejan más de los del BEM-BEM, lo cual podría deberse a las CC escogidas.

5.2.2 Dependiendo de la configuración física

Además de la frecuencia, los resultados cambian según se analice el problema para una determinada configuración física u otra.

De ésta manera, se puede ver que las curvas se desplazan, dependiendo de los valores asignados a L/D, E_P/E_S y ν . Se muestran algunos ejemplos en las figuras 5.5, 5.6 y 5.7. Se ha decidido mostrar los datos dimensionales por la 5.5, para evitar que a la hora de ajustar las curvas a los ejes, no pareciese (erróenamente) que la frecuencia de la respuesta difiere de un caso a otro. Nótese que además de las curvas del modelo Pasternak se incluyen las del modelo BEM-BEM, para poder comparar qué tanto se debe el desplazamiento de las curvas a la variación de la configuración física o a S_P .

Así, entrando a discutir propiamente lo mostrado en las gráficas, se observa lo siguiente:

 Comparativa L/D. El modelo Pasternak ajusta bien los valores de las curvas independientemente del L/D escogido, pero se aprecia una mayor diferencia entre el modelo Winkler y Pasternak conforme aumenta la esbeltez del pilote.

Figura 5.1: Respuesta del modelo optimizado. Datos de entrada: L/D = 20, $E_p/E_s = 100$, $\nu = 0.4$, $a_0^* = 0.01$, optimizando M

Figura 5.2: Respuesta del modelo optimizado. Datos de entrada: L/D = 20, $E_p/E_s = 100$, $\nu = 0.4$, $a_0^* = 0.29$, optimizando M

Figura 5.3: Respuesta del modelo optimizado. Datos de entrada: L/D = 20, $E_p/E_s = 100$, $\nu = 0.4$, $a_0^* = 0.65$, optimizando M

Figura 5.4: Respuesta del modelo optimizado. Datos de entrada: L/D = 20, $E_p/E_s = 100$, $\nu = 0.4$, $a_0^* = 1.00$, optimizando M

Por otro lado, al contrario de lo que pueda parecer a simple vista, las curvas están en fase. La apariencia dispar de las curvas en la gráfica se debe a que se presentan datos adimensionales.

- Comparativa E_P/E_S. En lo que a las curvas variando E_P/E_S, se observa una dispersión más acusada de las mismas. El efecto de usar un modelo Pasternak en lugar de uno Winkler mejora comparativamente más en éste caso que variando L/D.
- Comparativa ν. Sin embargo, dicho fenómeno apenas se aprecia al variar ν, pues las curvas apenas se dispersan usando un valor de ν u otro.

5.2.3 Dependiendo de la variable a optimizar

La optimización se realiza para disminuir el error de una variable; pero escoger optimizar una variable u otra cambia el S_P considerado óptimo y, por tanto, el resultado a obtener.

Así, se muestran la respuesta para las variables de salida optimizando para el desplazamiento, el giro, el cortante y el flector, que se muestra en las figuras 5.8, 5.9, 5.10 y 5.4, respectivamente. Se escoge representar en todas las gráficas la mayor frecuencia de estudio, porque se aprecian mayores amplitudes en los resultados. Se espera así hacer notar mejor cómo çambian"las gráficas según se optimice para una variable u otra.

5.3 Medida del error

Como ya se dice anteriormente, cuantificar la diferencia entre los datos de referencia y los obtenidos con el modelo que se presenta es necesario para validar el modelo.

De entrada, es importante aclarar que, aunque los valores calculados de error que se obtienen son complejos, en adelante sólo se usa la parte real. Es de interés comentar que, si bien también se usa sólo la parte real del error para identificar S_P , dicha elección no es arbitraria. Si se optimiza usando el valor imaginario, lo que se obtiene es que en ese caso el valor óptimo de S_P es 0, para todas las frecuencias estudiadas. Por ello se considera adecuado adoptar dicha política, simplificando los cálculos a realizar.

Por otro lado, por bien calculados que estén los datos, observar directamente las variables de salida en las gráficas, sin un estudio más profundo de los datos, puede llevar a equívocos. Así pues, con el error se tratan las mismas cuestiones que a la hora de estudiar los resultados de las variables de salida, además de la relación entre el error y S_P .

Empezando por la relación entre el error y S_P , se observa lo siguiente:

5.3.1 Relación con S_P

El valor obtenido de la optimización de S_P está directamente ligado al error por el hecho de usarlo como función objetivo a minimizar. Por ello, entender la relación entre ambos puede ilustrar y aportar detalles que mejoren el proceso de minimización.

Figura 5.5: Comparativa de respuesta variando L/D. Datos de entrada: $E_p/E_s = 100$, $\nu = 0.4$, $a_0^* = 1.00$, optimizando u

Figura 5.6: Comparativa de respuesta variando E_P/E_S . Datos de entrada: L/D = 20, $\nu = 0.4$, $a_0^* = 1.00$, optimizando u

Figura 5.7: Comparativa de respuesta variando ν . Datos de entrada: L/D = 20, $E_p/E_s = 100$, $a_0^* = 1.00$, optimizando u

Figura 5.8: Resultados optimizando el desplazamiento (u). Datos de entrada: L/D = 20, $E_p/E_s = 100$, $\nu = 0.4$, $a_0^* = 1.00$.

Figura 5.9: Resultados optimizando el giro (θ). Datos de entrada: L/D = 20, $E_p/E_s = 100$, $\nu = 0.4$, $a_0^* = 1.00$.

Figura 5.10: Resultados optimizando el cortante (V). Datos de entrada: L/D = 20, $E_p/E_s = 100$, $\nu = 0.4$, $a_0^* = 1.00$.

Así, atendiendo al hecho de que calculando el error del modelo analítico, Winkler o Pasternak, se supone ya un S_P (independientemente de que sea el óptimo), se tiene que la optimización debe ser un proceso recursivo, comparando constantemente los errores obtenidos hasta encontrar el mínimo. Sirva de ejemplo la figura 5.11, para la cual el error mínimmo se obtendría con valores de S_P entre 11 y 13.

Figura 5.11: Error respecto al S_P usado para su obtención. Datos obtencion.

Nótese que la curva, continua, descrita al representar el error frente al S_P depende de la frecuencia, por lo que S_P dependerá de la frecuencia también.

Además, al minimizar el error para identificar S_P , se da prioridad al mínimo valor de S_P en el caso de que al menos dos errores coincidan. Ésto se introduce para los casos en los que la relación S_P —error tenga un comportamiento asintótico.

5.3.2 Dependiendo de la frecuencia

En el apartado anterior ya se dice: el error, como las variables de salida, depende de la frecuencia. Lo que se observa al analizar las gráficas, como la que se presenta en la figura 5.12, es que los valores de error para las frecuencias más bajas son destacablemente más altos. Sobretodo para los esfuerzos cortante y flector.

Se observa que para las frecuencias más altas el error baja del 10%. Ésto ocurre en todos las configuraciones físicas estudiadas.

5.3.3 Dependiendo de la configuración física

Como se nombraba con las variables de salida, estudiar la respuesta para una configuración física u otra resalta que, si bien las curvas mantienen el mismo patrón, se desplazan según el caso.

Figura 5.12: Errores obtenidos de comparar el modelo Winkler y Pasternak con el BEM-BEM. Datos de entrada: L/D = 20, $E_p/E_s = 100$, $\nu = 0.4$, optimizando M.

De ésta manera, se tiene las figuras 5.13, 5.14 y 5.15, que presentan las gráficas del error variando L/D, E_P/E_S y ν , respectivamente.

En ésta ocasión se presentan las curvas del modelo Winkler junto a las del Pasternak, para mostrar la diferencia entre ambos (no apreciable en las figuras 5.5, 5.6 y 5.7).

Se observa lo siguiente:

- Comparativa L/D. Como se puede apreciar en la figura 5.5, el modelo ajusta bien las curvas, especialmente para las mayores frecuencias estudiadas. También se puede apreciar que, para el cortante y el flector, conforme disminuye L/D, lo hace la pendiente.
- **Comparativa** $\mathbf{E}_{\mathbf{P}}/\mathbf{E}_{\mathbf{S}}$. Para el cortante y el flector, al aumentar E_P/E_S , aumenta la pendiente del las curvas de error del modelo Winkler. Sin embargo, las curvas de error del Pasternak apenas se dispersan.
- Comparativa ν. Igual que para E_P/E_S, el error del modelo Pasternak no depende de ν.

5.3.4 Dependiendo de la variable a optimizar

Íntimamente relacionado con lo comentado anteriormente, el error supone ahora aportar cantidades a lo observado cualitativamente.

Se construye la tabla 5.3 para unificar los datos de error y, por tanto, cuantificar si una variable reduce sensiblemente más o no los errores en la respuesta.

Figura 5.13: Comparativa de errores variando L/D. Datos de entrada: $E_p/E_s = 100$, $\nu = 0.40$, optimizando u

Figura 5.14: Comparativa de errores variando E_P/E_S . Datos de entrada: L/D = 20, $\nu = 0.40$, optimizando u

Figura 5.15: Comparativa de errores variando ν . Datos de entrada: L/D = 20, $E_p/E_s = 100$, optimizando u

Teniendo en cuenta que el error para unos datos de entrada dados es diferente para cada frecuencia estudiada, lo que se hace es presentar el valor medio de los valores obtenidos para cada frecuencia, para así presentar un valor único por variable. Además, para medir la mejora en sí, no se muestra el error Winkler o Pasternak, sino la diferencia entre ambos, de manera que lo mostrado cuantifica la mejora de Pasternak respecto a Winkler.

	Optimizando u	Optimizando θ	Optimizando V	Optimizando M
u	2.43%	2.32%	2.06 %	2.22%
θ	2.74%	2.85%	2.31 %	2.51 %
V	2.00 %	2.01 %	2.18%	2.13%
Μ	3.18%	3.20 %	3.24 %	3.33%

Tabla 5.3: Comparativa de la mejora en el error medio obtenido para cada variable de salida, según la variable respecto a la que se optimice. Datos de entrada: L/D = 20, $E_p/E_s = 100$, $\nu = 0.4$.

Lo que se observa analizando dicha tabla es que ninguna variable mejora muchísimo más que las demás la respuesta del modelo, pero sí es posible apreciar que el modelo Pasternak mejora siempre el Winkler, con valores entre 0.12-4.95 % según la variable de salida, la variable optimizada y la configuración física que se estudie.

Así, se observa tambieén lo siguiente:

- Para L/D = 20, el flector siempre mejora más que las demás variables.
- Para L/D = 10, todos los valores son sensiblemente más bajos que con otros valores de L/D.
- Para la combinación $E_p/E_s = 200$ y $\nu = 0.49$, los valores de mejora son especialmente altos.

Se puede decir por tanto, que, teniendo en cuenta lo observado en los datos de error, en todos los casos estudiados optimizar respecto al flector supone al menos la misma mejoría, si no más, que optimizando respecto al resto de variables.

Figura 5.16: Comparativa optimizando el cortante (V) cuando se prescinde de cabeceo y tensiones rasantes. Datos de entrada: L/D = 20, $E_p/E_s = 100$, $\nu_s = 0.4$.

Figura 5.17: Comparativa optimizando el flector (M) cuando se prescinde de cabeceo y tensiones rasantes. Datos de entrada: L/D = 20, $E_p/E_s = 100$, $\nu = 0.4$.

Por otro lado, también es notable la diferencia entre incluir o no el efecto de cabeceo y las tensiones rasantes en el modelo, como puede observarse en la figuras 5.16 y 5.17.

A pesar de que a simple vista no parecía haber mucha diferencia (observando directamente las variables de salida), se observa cómo al tener en cuenta dichos fenómenos físicos, el cortante pasa de tener errores descontrolados (de más del 30 %) a seguir una curva relativamente próxima a la de referencia (valores de error inferiores a 15 %).

El flector, en cambio, se ajusta mejor cuando se prescinde del cabeceo y de las tensiones rasantes en todas las configuraciones físicas probadas. Pasa de tener valores de error de cerca del 20% para las frecuencias más bajas a bajar, en prácticamente todos los casos, del 10%.

5.4 Evolución de S_P

Como se ve previamente en el planteamiento del modelo, se calcula la impedancia de Winkler con el procedimiento de Novak; considerando el segundo coeficiente de balasto, la impedancia de Pasternak, como como una variable de diseño cuyo valor hay que identificar.

En los resultados de la optimización se observa lo siguiente:

5.4.1 Dependiendo de la frecuencia

Exactamente como venía pasando tanto con las variables de respuesta, como con el error, el S_P se supone y demuestra dependiente de la frecuencia. Se puede apreciar en la figura 5.18.

Figura 5.18: S_P frente a la frecuencia. Datos de entrada: L/D = 20, $E_p/E_s = 100$, $\nu = 0.4$, optimizando u.

Se observa que, curiosamente, la impedancia adimensional de Pasternak depende de forma prácticamente lineal de la frecuencia. No se incurría en mucho error si se representa como una recta con corte en el origen de coordenadas.

5.4.2 Dependiendo de la variable a optimizar

El parámetro S_P depende de la frecuencia. Así se ha considerado al hablar tanto de las variables de salida del modelo, como del error. Sin embargo, no parece que dependa en gran medida de la variable que se optimiza, tal como se observa en la figura 5.19.

Figura 5.19: Comparativa S_P óptimo calculado en función de la variable a optimizar. Datos de entrada: L/D = 20, $E_p/E_s = 100$, $\nu = 0.4$.

Nótese además que la presencia de valores tan altos de S_P en las frecuencias bajas del cortante y del flector es despreciable. Observando los valores de error para esas mismas frecuencias y optimizando dichas variables, es palpable que no existe una gran mejoría entre usar un modelo Pasternak (con dicho S_P) y un modelo Winkler.

Ésto puede deberse a lo pequeños que son ya los valores de las variables de salida en dichas frecuencias, en cuyo caso no resulta tan crítico a posteriori un cálculo menos certero, es decir, suponer un S_P bajo, más coherente con el carácter "lineal" que se aproxima para S_P .

5.4.3 Dependiendo de la configuración física

Si bien la curva de S_P dependiente de la frecuencia tiende siempre a crecer linealmente, la pendiente de la misma varía según la configuación física que se estudie. De ésta manera, se tiene las figuras 5.20, 5.21 y 5.22, donde se observa que:

• Comparativa L/D.

Al igual que con los errores, al aumentar L/D, aumenta la pendiente de S_P . Por ello se puede decir que S_P depende directamente de L/D.

• Comparativa E_P/E_S .

Ahora, aumenta la pendiente al aumentar el valor de E_P/E_S .

• Comparativa ν .

En la misma tónica, al aumentar ν , aumenta la pendiente.

Figura 5.20: Comparativa de S_P variando L/D. Datos de entrada: $E_p/E_s = 100$, $\nu = 0.40$, optimizando u

Figura 5.21: Comparativa de S_P variando E_P/E_S . Datos de entrada: L/D = 20, $\nu = 0.40$, optimizando u

Figura 5.22: Comparativa de S_P variando ν . Datos de entrada: L/D = 20, $E_p/E_s = 100$, optimizando u

5 Resultados

Capítulo 6

CONCLUSIONES

Se decide formular un modelo Pasternak para el estudio de la respuesta dinámica de un pilote, identificando el valor de S_P (parámetro que lo diferencia de un clásico modelo Winkler), y se incluye en el modelo cabeceo y tensiones rasantes. Se pretende con ésto obtener un modelo analítico sencillo y suficientemente riguroso, comparando su salida con la de modelos de resolución numérica más precisos y costosos computacionalmente.

Se ensayan 27 configuraciones físicas, cambiando L/D, E_p/E_s , y ν , y se estudia la dependencia de la respuesta a la frecuencia, a los parámetros recién nombrados y a S_P . Tras mostrar y analizar los resultados obtenidos, se concluye lo siguiente:

6.1 Sobre el modelo analítico propuesto

Se buscaba un modelo que, siendo sencillo, recogiera lo más fielmente la respuesta dinámica del pilote a una excitación armónica (tipo onda SH). Por lo obtenido, tanto en las gráficas de la respuesta como en las de los errores, se puede afirmar que se consigue, aunque con valores de error todavía altos, según el caso (de en torno al 10-20% respecto al modelo de referencia).

Se estudia si minimizar el valor del error respecto a una variable en concreto, identificando el valor de S_P óptimo, mejora la respuesta. Se comprueba que no afecta sustancialmente al resultado, pero se ven indicios de que, salvo que se tenga un especial interés en el cortante, la variable a optimizar por defecto es el flector. Si se tiene especial interés en el cortante no se debe prescindir de cabeceo y tensiones rasantes, pero si la variable de interés es el flector, mejor no incluir dichos efectos. Así, los factores que más colaboran a dicha mejora son precisamente el parámetro de Pasternak (S_P), incluir las inercias del pilote e incluir, o no, cabeceo y tensiones rasantes.

Por otro lado, las variables L/D, E_p/E_s , y ν varían la respuesta, especialmente L/D y E_p/E_s ; pero no se les encuentra relación con la disminución del error (y por tanto, mejora del modelo), como sí pasa con S_P .

Se han observado además fuertes indicios de que S_P depende de L/D, E_p/E_s , y ν , pero no se propone aquí ninguna expresión analítica para el parámetro S_P porque se considera necesario un estudio más exhaustivo de las variables que afecten al mismo.

Así, se considera que, si bien todavía no es lo suficientemente certero, se consigue formular un modelo analítico más completo y tener un mejor conocimiento del comportamiento de modelos simplificados tipo Winkler.

6.2 Líneas futuras

Del trabajo realizado en el presente PFC se extrae que tal vez sea posible encontrar un modelo simplificado de interacción suelo-estructura que devuelva una respuesta satistactoriamente certera, siempre que se sepa introducir adecuadamente en los modelos la realidad física del pilote al ser excitado.

Por ello, se insta a seguir investigando los modelos simplificados, pudiendo seguir las siguientes líneas de investigación:

- Identificación y caracterización de los factores que definen el comportamiento del parámetro S_P.
- En la misma líena, formular e implementar expresiones para la sensibilidad del modelo a S_P, para entender mejor el modelo y su respuesta, ahora incluyendo una expresión analítica para S_P.
- Estudio exhaustivo de la calidad de la respuesta con distintos suelos y estructuras para un modelo Pasternak. Si bien estudios así existen, son para modelos Winkler asecas.
- Estudio de la respuesta de un modelo Pasternak excitaciones no armónicas.
- Desarrollo de modelos multipilote, estudiando la posible influencia de S_P en las impedancias y/o en el efecto grupo.

Y así, podría continuarse con una larga lista de opciones posibles, más o menos viables. Dichas propuestas son algunos ejemplos que se sugieren por su interés de cara a trabajos futuros, vista la influencia en el modelo propuesto del parámetro de Pasternak.

REFERENCIAS

- [1] Francisco Chirino, Orlando Maeso, and J.J. Aznárez. Una técnica simple para el cálculo de las integrales en el sentido del valor principal en el mec 3d. *Revista internacional de métodos numéricos para cálculo y diseño en ingeniería*, 16(1):77– 95, 1998.
- [2] Ray W. Clough and Joseph Penzien. *Dynamic of structures*. Computers & Structures, Inc., 3rd edition, 1995.
- [3] José Dominguez. Boundary elements in Dynamics. Computational Mechanics Publications, Southampton Boston, 1993.
- [4] George Gazetas. Foundation vibrations. *Foundation Engineering Handbook*, 1991.
- [5] M Hetényi. A general solution for the bending of beams on an elastic foundation of arbitrary continuity. *Journal of Applied Physics 21*, (55), 1950.
- [6] R. Jones and J. Xenophontos. On the vlasov and kerr foundation models. Acta Mechanica, Volume 25:45–49, 1976.
- [7] Arlond D. Kerr. Elastic and viscoelastic foundation models. *Journal of Applied Mechanics*, 31, 1964.
- [8] Milos Novak, Toyoaki Nogami, and Fakhry Aboul-Ella. Dynamic soil reactions for plane strain case. *Journal of the Engineering Mechanics*, 104(4):953–959, 1978.
- [9] Mario Paz. Dinámica estructural. Teoría y Cálculo. Reverté, S.A., 1992.
- [10] Ariel Santana. *Modelo Simple para el Cálculo de la Respuesta Sísmica de una Estructura Enterrada*. PFC. Universidad de Las Palmas de Gran Canaria, 2009.
- [11] Ariel Santana. Modelo winkler para el análisis de la respuesta dinámica de estructuras enterradas. Master's thesis, Universidad de Las Palmas de Gran Canaria, 2010.
- [12] Jaime Santos. Interacción estática suelo-estructura. modelos de suelos empleados. *Revista de Obras Públicas*, pages 181–191, February 1980.
- [13] Almudena Soriano. Interacción suelo-estructura. modificación del movimiento. Física de la Tierra, (1), 1989.
- [14] S. P. Timoshenko. On the correction for shear of the differential equation for transverse vibrations of pris- matic beams. *Philosophical Magazine* 41, pages 744–746, 1921.

- [15] S. P. Timoshenko. On the transverse vibrations of bars of uniform cross-section. *Philosophical Magazine 43*, pages 125–131, 1922.
- [16] A.S. Veletsos, A.H. Younan, and K. Bandyopadhyay. Dynamic modeling and response of rigid embedded cylinders. *Journal of engineering mechanics*, 121(9):1026– 1035, 1995.
- [17] V.Z. Vlasov and N.N. Leont'ev. *Beams, plates and shells on elastic foundations.* Jerusalem, Israel Program for Scientific Translations, 1966. Translated from Russian.

CÓDIGO MATLAB GENERADO

En este anexo se escribe el programa de ordenador desarrollado y basado en el modelo y procedimiento expuestos en los capítulos de esta memoria. Dicho programa está escrito en código MatLab y ha sido el utilizado para obtener los resultados que se presentan.

En lo que sigue, no se analizan en detalle las características del cdigo y sus componentes. Sin embargo, sí se incluyen en el fichero fuente suficientes comentarios descriptivos, que permiten realizar un seguimiento de sus operaciones y las variables principales implicadas en dichas operaciones.

```
Sp OPTIMIZER
      2
 1
     % Program used in "Formulacion y calibracion de un modelo parametrico suelo-
 2
 3
     % estructura simplificado para el estudio dinamico de estructuras enterradas"
     % Maria Castro Fernandez. Final Thesis (Industrial Engineering)
 4
 5
 6
     % It calculates Pasternak and Winkler models responses with certein problem data,
 7
      % compares the results with reference data (BEM model), calculates analytic
8
      % models error. It finds the optimized Sp value (fmincon) or uses a set of values
9
      % given at the begining (sweep).
10
      2
      11
12
     % INPUT VARIABLES
13
      2
14
     % Calculation Values
                                                                  Description
15
     % options
16
      2
      %'cases',
                     % from 1 to maximun % case identification number
17
     %'cases', % from 1 to maximun % case identification number
%'w', % from 1 to nw % calculated frequencie(s)
%'up_down', % up=1:np, down=1:np % pile length Sp is optimized for
%'Sp_v', % 1(u) 2(th) 3(V) 4(M) % Sp according to the optimized variable
%'opt_mode' % sweeper or fmincon % Sp optimizing method
%'Sp', % any positive number range % Sp sweeper range
%'Sp0', % from 0 to +Inf % Sp fmincon optimizer initial seed
%'err_kind' % 1, 2, 3 or 4 % error tipe used in post-procesing
%'err_component' % 1 (real), 2 (imag.) % error component used
%'dim_criterion' % 'adim' or 'dim'
18
19
20
21
22
23
24
25
26
27
     2
28
     % Model refered Values
                                                                  Description
29
    % Input Data
30
     2
    31
32
33
34
35
36
     00
                                                              % (0=desplac./rot.,1=force/moment)
     %'BCvalue' % [r/i r/i r/i r/i] % Boundary Condition Values
37
     00
38
                                                               % (r=real or i=integer values)
39
     00
     %General Input Data% CONSTANTS:%'Dp',0.6,...% Pile diameter (suposed cylindrical shape)
40
     . LP , SelU,.... File diameter (suposed cyl:<br/>% Pile Young's modulus<br/>% Soil-Pile density relation<br/>% Pile Poisson number<br/>% Soil damping to Soil<br/>% Soil damping to Soil
41
42
43
44
45
      %'shear factor',0.882352941,... % Shear factor
46
      %'nw',15.,...
47
                                               % Number of frecquencies considered
48
      %'np',42.);
                                               % Number of internal points considered
49
     50
51
      % OUTPUT VARIABLES
     % OP Plot Values
52
                                                       Description
     % Options
% Options
%'up_down' % up=1:np, down=1:np % pile lenght shown in plot
%'variable' % [0/1 0/1 0/1 0/1 0/1] % variable shown in plot (u,th,V,M or all)
%'Err_a0' % [0/1 0/1 0/1 0/1 0/1] % variable shown in plot (u,th,V,M or all)
(where 1=true, 0=false)
53
54
55
56
57
     %'Sp_a0' % true/false
%'SpErr_a0' % true/false
%'Sp_nus_3' % true/false
58
                                                      % if a Sp-a0 plot is shown
                                                   % if a Sp-a0, Error-a0 subplot is shown
% if a Sp-nus-a0 3D plot is shown
59
60
      %'Sp_EsEp_3' % true/false
%'Sp_LD_3' % true/false
61
                                                      % if a Sp-EsEp-a0 3D plot is shown
62
                                                       % if a Sp-LD-a0 3D plot is shown
63
      8
64
    % OP Writing Values
                                                       Description
     % Options
%'Winkler' % true/false
%'Pasternak' % true/false
65
                                                 % if Winkler data is writen in file
% if Pasternak data is writen in file
% if Winkler error data is writen in file
% if Pasternak error data is writen in fil
66
67
     %'E_w' % true/false
%'E_p' % true/false
68
69
                                                      % if Pasternak error data is writen in file
     %'Sp_opt'
70
                        % true/false
                                                       % if optimized Sp data is writen in file
71
      2
72
      73
                                                                                                     8
```
```
74
 75
      clear all; clc
 76
 77
        % INPUT %
      2
                                                                                  8
 78
      % Calculation Options
      C=struct('cases', [1],...
 79
               'w',
 80
                         [1:15],...
               'up_down',[1 42],...
 81
 82
               'Sp_v', 4,...
               'opt_mode','fmincon',...
 83
               'Gradient', false,...
 84
               'Sp', [0.:0.1:15.],...
'Sp0', [0.],...
 85
 86
                      [0.],...
 87
               'err_kind',4,...
 88
               'err_component',1,...
 89
               'dim_criterion', 'adim');
 90
 91
      % Model refered Input Data
      MODEL=struct('rocking',
 92
                                  true,...
                    'distortion',
                                  true,...
 93
                    'shwave',
 94
                                  true,...
                    'impedance', 'Novak',...
 95
                   'BC', [1 0 1 1],...
'BCvalue',[0 0 0 0]);
 96
 97
 98
 99
      % General Input Data
      DATA=struct('Dp',0.6,...
'Ep',3el0,...
100
101
102
                  'rhos_rhop',0.7,...
103
                  'nup',0.25,...
                  'xis',0.05,...
104
                  'shear_factor',0.882352941,...
105
106
                  'nw',15.,...
107
                  'np',42.);
108
109
      % Output Options
110
      P=struct('up down', [1 42],...
111
               'variable',[0 0 0 0 0],...
               'Err_a0', [0 0 0 0 0],...
112
                           false,...
113
               'Sp a0',
               'SpErr a0', true);
114
115
116
      P3D=struct('Sp_nus_3', false,...
117
                 'Sp_EsEp_3', false,...
                 'Sp_LD_3', false);
118
119
120
      W=struct('Winkler', false,...
121
                'Pasternak', false,...
               'E w',
                            false,...
122
123
               'Ε_p',
                            false,...
124
               'Sp opt',
                            false);
125
126
127
      128
      % % Pre-processing %
129
                                            C.w=sort(C.w); P.w=C.w;
      C.cases=sort(C.cases);
130
      a0=(0.01:(1-0.01)/(DATA.nw-1):1);
131
132
      % Initialazing matrixes
133
             C.up_down(2)+1-C.up_down(1);
      num=
134
      depth= zeros (length (C.cases), DATA.np);
135
           zeros(length(C.cases),4,num,length(C.w),2);
      BEM=
136
      Sp_opt= zeros(length(C.cases),length(C.w));
137
      w_total=zeros(length(C.cases),length(C.w));
138
139
      8
        % MAIN PROCESS %
                                                                                  8
140
      switch C.opt mode
141
          case 'sweeper'
142
              if isempty(find(C.Sp==0.,1))
143
                  len=length(C.Sp)+1;
144
                  Sp calc=zeros(len,1);
145
                  Sp calc(1)=0.;
146
                  for ii=1:length(C.Sp); Sp calc(ii+1)=C.Sp(ii); end
```

```
147
              else
                   Sp_calc=C.Sp;
148
149
              end
150
              AN= zeros(length(C.cases),length(Sp calc),4,num,length(C.w),2);
151
              err=zeros(length(C.cases),length(Sp calc),4,length(C.w),2);
152
153
              for i case=1:length(C.cases)
154
                   % DATA cases parameters
155
                   [DATA.L D, DATA.Es Ep, DATA.nus]=DATA cases (C.cases (i case));
156
                   depth(i case,:)=linspace(0,-DATA.L D*DATA.Dp,DATA.np);
157
158
                   % BEM model data
159
                   [BEM ]=BEM data(C.cases(i case),C.w,C.dim criterion,DATA.Ep,DATA.Dp);
160
                   BEM(i case,:,:,:,:)=BEM ;
161
162
                   % Sp Optimization
163
                   [Sp_opt(i_case,:),AN_,err_]=Sp_sweeper(DATA,MODEL,C);
164
                   AN (i_case,:,:,:,:)= AN_ (:,:,:,:);
165
                   err(i case,:,:,:,:)=
                                                err (:,:,:,:);
166
              end
          case 'fmincon'
167
168
                      zeros(length(C.cases), 4, num, length(C.w), 2);
              AN=
169
                      zeros(length(C.cases), 4, num, length(C.w), 2);
              ANw=
170
              err p= zeros(length(C.cases), 4, length(C.w), 2);
              err w= zeros(length(C.cases), 4, length(C.w), 2);
172
              sens= zeros(size(Sp_opt,1),size(Sp_opt,2));
173
174
              for i case=1:length(C.cases)
175
                   % DATA cases parameters
176
                   [DATA.L D,DATA.ES Ep,DATA.nus] = DATA cases (C.cases (i case));
177
                  depth(i_case,:)= linspace(0,-DATA.L_D*DATA.Dp,DATA.np);
179
                   % BEM model data
180
                   [BEM ]= BEM data(C.cases(i case),C.w,C.dim criterion,DATA.Ep,DATA.Dp);
181
                  BEM(i case,:,:,:,:)= BEM ;
183
                  % Sp Optimization
184
                   for jj=1:length(C.w)
185
                      [Sp opt(i case,jj),
                                                                    . . .
186
                       AN(i case,:,:,jj,:),differ,
                                                                    . . .
187
                       err p(i_case,:,jj,:),
                                                                    . . .
188
                       ANw(i_case,:,:,jj,:),err_w(i_case,:,jj,:), ...
189
                       G,sens ,outopt
                                                              1
                                                                  = ...
190
                       Sp fmincon(DATA,MODEL,C,C.w(jj),C.Sp0);
191
                   sens(i_case,jj)=sens_;
192
                   end
193
              end
194
      end
195
196
          % Post-processing %
                                                                                    00
197
      % Assingning output variables (Winkler and Pasternak values)
198
      switch C.opt mode
199
          case 'sweeper'
200
               % Winkler
201
              AN w(:,:,:,:) = AN(:,1,:,:,:);
                                                  err w(:,:,:,:)= err(:,1,:,:,:);
202
203
              % Pasternak
204
              AN p=zeros(length(C.cases),4,num,length(C.w),2);
205
              err p=zeros(length(C.cases),4,length(C.w),2);
206
207
              for jj=1:length(C.w)
208
                   index=min(find(C.Sp==Sp_opt(jj),1)); % It might be interesting later
209
                  AN_p(:,:,:,:)=AN(:,index,:,:,:,:);
210
                   err_p(:,:,jj,:)=err(:,index,:,jj,:);
211
              end
212
          case 'fmincon'
213
              AN w=ANw;
214
              AN p=AN;
215
              Grad opt=zeros(length(C.cases),4,num,length(C.w),2);
216
              for i case=1:length(C.cases)
                  for i w=1:length(C.w)
218
                       [algo,algo2] = ANALITIC (DATA,MODEL,Sp opt(i case,i w),...
219
                           i w,C.dim criterion,C.Gradient);
```

С	Grad opt(i case,:,:,i w,:)=algo2(:,:,:);
1	end
2	end
3	end
4	
5	ୡୄୡୄୄଌୄୡୄୡୄୡୄୡୄୡୄୡୄୡୄୡୄୡୄୡୄୡୄୡୄୡୄୡୄୡୄୡୄ
6	88 OUTPUT 88
7	
8	% Writing the results down into a file
9	if (W.Winkler W.Pasternak W.E_w W.E_p W.Sp_opt)
C	OUT_write(DATA.np,DATA.nw,C.cases,C.opt_mode,C.Sp_v,C.w,C.up_down,W,AN_w,AN_p
1	<pre>err_w,err_p,Sp_opt);</pre>
2	end
3	
4	% Plotting the results
5	OUT_variables(P,C.cases,BEM,AN_w,AN_p,depth,DATA.np,C.err_component);
6	OUT_error(P,C.cases,err_w,err_p,depth,DATA.np,a0,C.w,C.err_component,Sp_opt,C.Sp_
7	<pre>OUT_Sp(P,C.cases,Sp_opt,err_w,err_p,depth,DATA.np,a0,C.w,C.err_component);</pre>
8	<pre>OUT_3(P3D,C.w,C.cases,Sp_opt,err_p);</pre>
9	
С	<u>୬</u> ୬ ୬ ୮

```
1
     function [AN,G]=ANALITIC(DATA,MODEL,SP,freq,dim criterion,Gradient)
 2
                                                                               8
 3
     % - Analitic model function -
 4
                                                                               8
 5
 6
    %-----%Auxiliar variables%-----%
7
    8 W
8
      rhos=1750.;
9
      Es=DATA.Es Ep*3e10;
10
      mu=Es/2/(1+DATA.nus);
11
      cs=sqrt(mu/rhos);
12
      wmin=0.01*cs/DATA.Dp;
13
      wmax=cs/DATA.Dp;
14
15
      w total= (wmin: (wmax-wmin) / (DATA.nw-1):wmax);
      w= zeros(length(freq),1);
16
17
      a0 total=(0.01:(1-0.01)/(DATA.nw-1):1);
       a0=zeros(length(freq),1);
18
19
       for ii=1:length(freq)
20
                                                a0(ii)=a0 total(freq(ii));
           w(ii)=w_total(freq(ii));
21
       end
22
23
     % Auxiliar constants
24
       img=0+1i;
25
       if DATA.np<2; error('np should be >=2'); end
26
      xi=0:(1/(DATA.np-1)):1;
27
      depth=DATA.L D*DATA.Dp*-xi;
28
      a0a=a0/sqrt(1+2*DATA.xis*img);
29
30
      11=
                zeros(DATA.np,length(freq));
31
      dudxi= zeros(DATA.np,length(freq));
32
      d2ud2xi= zeros(DATA.np,length(freq));
33
      d3ud3xi= zeros(DATA.np,length(freq));
      d4ud4xi= zeros(DATA.np,length(freq));
34
35
      theta= zeros(DATA.np,length(freg));
36
      V=
                zeros(DATA.np,length(freq));
37
      M=
               zeros(DATA.np,length(freq));
38
39
     switch MODEL.impedance
40
         case 'Novak'
41
             [SH,SV,SR,ST]=S Novak diameter(DATA.nus,DATA.xis,0.001);
42
             SD=SR;
         case 'Gazetas'
43
44
         otherwise
              error('Invalid impedance %s', MODEL.impedance);
45
46
    end
47
48
    for ii=1:length(freq)
49
       alpha=1+2*(1+DATA.nup)/DATA.shear factor;
50
      beta=1-1/16*(a0(ii)^2)/DATA.rhos rhop*DATA.Es Ep*(1+DATA.nup)/(1+DATA.nus)/...
51
             DATA.shear factor;
52
53
       % Dimensionless impedances
54
       switch MODEL.impedance
55
           case 'Novak'
56
               [SH,SV,SR,ST]=S_Novak_diameter(DATA.nus,DATA.xis,a0(ii));
57
               SD=SR;
58
           case 'Gazetas'
59
               [SH,SV,SR,ST]=S Gazetas (DATA.nus,DATA.xis,a0(ii));
60
               SD=SR;
61
           otherwise
62
               error('Invalid impedance %s', MODEL.impedance);
63
      end
64
65
       % Kappa a^2
66
      k1=0.5*(DATA.L D^2)*DATA.Es Ep*(a0(ii)^2)/(1+DATA.nus)/DATA.rhos rhop;
67
68
       % Kappa 1^4
69
       k2=8*(DATA.L D^4)*DATA.Es Ep*(a0(ii)^2)/(1+DATA.nus)/DATA.rhos rhop;
70
71
       % K P / G A \kappa
72
       k3=4/pi*DATA.Es Ep*(1+DATA.nup)/(1+DATA.nus)/DATA.shear factor*SP;
73
```

```
74
        % K P L^2 / E I
 75
       k4=32/pi*(1/(1+DATA.nus))*((DATA.L D)*(DATA.L D))*(DATA.Es Ep)*SP;
 76
 77
       if MODEL.distortion
 78
          % K D L^2 / E I
 79
          k5=32/pi*(DATA.L D^2)*DATA.Es Ep*(1/(1+DATA.nus))*SD;
 80
        else
 81
         k5=0;
 82
        end
 83
 84
        if MODEL.rocking
 85
          % K R L^2 / E I
         k6=32/pi*(DATA.L D^2)*DATA.Es Ep/(1+DATA.nus)*SR;
 86
 87
        else
 88
         k6=0:
 89
        end
 90
 91
        % K H / G A \kappa
 92
       k7=4/pi*(DATA.L D^2)*DATA.Es Ep*(1+DATA.nup)/(1+DATA.nus)/DATA.shear factor*SH;
 93
        % K H L^4 / E I
 94
 95
       k8=32/pi*(DATA.L D^4)*DATA.Es Ep/(1+DATA.nus)*SH;
 96
 97
        % G A \kappa L^2 / E I
 98
        k9=8*DATA.shear factor*(DATA.L D^2)/(1+DATA.nup);
 99
100
      101
      %-----%Components%-----
                                                                              -%
103
      % Dimentionless Rotation components
104
        g3=(1+k3)/(k9-k1+k5+k6);
105
        g1=(k1*(alpha-1)-k7+k9+k5)/(k9-k1+k5+k6);
106
        gI=(k7-k5)/(k9-k1+k5+k6);
108
      % Dimentionless Shear Force components
        v=pi/8*DATA.shear_factor/(1+DATA.nup)/DATA.L_D;
109
110
111
      % Dimentionless Bending Moment components
112
       m=pi/64/DATA.L D^2;
113
114
     % Desplacement components
115
      % Homogeneous solution
       c2=(k1*alpha-k7-beta*k4+k5-(k6+k5)*(k1*(alpha-1)-k7+k9+k5)/(k9-k1+k5+k6))...
116
117
              /(1+k3)/(1-(k5+k6)/(k9-k1+k5+k6));
118
       c0=(-k2*beta+k8*beta)/((1+k3)*(1-(k5+k6)/(k9-k1+k5+k6)));
119
120
       l=roots([1 0 c2 0 c0]);
121
122
       % Particular solution (Incident SH wave)
123
       if MODEL.shwave
124
         cI2=(k6*gI-k7-k5)/(1+k6*g3-k3);
125
         cI0=(k8*beta)/(1+k6*g3-k3);
126
         B=0.5*(cI0-cI2*DATA.L D^2*a0a(ii)^2)/(DATA.L D^4*a0a(ii)^4-DATA.L D^2*a0a(ii)^2*c2
          +c0);
127
        else
128
         B=0;
129
        end
130
131
       \% System of Linear Equations (L*A=F) (Here BC are introduced into the problem)
132
       L=zeros(4,4);
133
       F=zeros(4,1);
134
135
        %_____
136
        % Equation 1: transversal degree of freedom at xi=0
137
       el=exp(0);
138
        switch MODEL.BC(1)
139
          % Displacement U0 at xi=0
140
         case 0
141
           U0=MODEL.BCvalue(1);
142
           L(1,:)=ones(1,4);
143
           F(1)=U0-B*(exp(img*a0a(ii)*DATA.L D*0)+exp(-img*a0a(ii)*DATA.L D*0));
144
         % Dimensionless shear force V0 at xi=0
```

```
145
         case 1
146
           V0=MODEL.BCvalue(1);
147
           L(1,:)=v*((1-g1)*l.*el-g3*l.^3.*el);
148
           F(1)=V0-v*((B*(1-g1)-gI*0.5)*img*a0a(ii)*DATA.L D-B*g3*(img*a0a(ii)*DATA.L D)^3)
           *...
149
             (exp(img*a0a(ii)*DATA.L D*0)-exp(-img*a0a(ii)*DATA.L D*0));
150
         otherwise
151
             error('Invalid MODEL.BC(1) %d',MODEL.BC(1));
152
        end
153
154
        %______%
155
        % Equation 2: rotational degree of freedom at xi=0
156
       el=exp(0);
157
        switch MODEL.BC(2)
158
         % Dimensionless rotation G0 at xi=0
159
         case 0
           G0=MODEL.BCvalue(2);
160
161
           L(2,:)=g3*1.^3.*el+g1*1.*el;
           F(2)=G0-(B*g3*(img*a0a(ii)*DATA.L D).^3+(B*g1+gI*0.5)*img*a0a(ii)*DATA.L D)*...
162
              (exp(img*a0a(ii)*DATA.L_D*0)-exp(-img*a0a(ii)*DATA.L_D*0));
163
164
         % Dimensionless bending moment M0 at xi=0
165
         case 1
166
           MO=MODEL.BCvalue(2);
           L(2,:)=m*(g3*1.^4.*el+g1*1.^2.*el);
167
168
           F(2)=M0-m*(B*g3*(img*a0a(ii)*DATA.L D)^4+(B*g1+g1*0.5)*(img*a0a(ii)*DATA.L D)^2)
           *...
169
            (exp(img*a0a(ii)*DATA.L D*0)+exp(-img*a0a(ii)*DATA.L D*0));
170
         otherwise
171
             error('Invalid MODEL.BC(2) %d',MODEL.BC(2));
172
       end
173
174
        %______%
175
        % Equation 3: transversal degree of freedom at xi=1
176
       el=exp(l);
177
       switch MODEL.BC(3)
178
         % Displacement U1 at xi=1
179
         case 0
           U1=MODEL.BCvalue(3);
181
           L(3,:) = ones(1,4);
182
           F(3)=U1-B*(exp(img*a0a(ii)*DATA.L D*1)+exp(-img*a0a(ii)*DATA.L D*1));
183
         \% Dimensionless shear force V1 at xi=1
184
         case 1
185
           V1=MODEL.BCvalue(3);
186
           L(3,:)=v*((1-g1)*l.*el-g3*l.^3.*el);
187
           F(3)=V1-v*((B*(1-g1)-gI*0.5)*img*a0a(ii)*DATA.L D-B*g3*(img*a0a(ii)*DATA.L D)^3)
           *...
188
             (exp(img*a0a(ii)*DATA.L_D*1)-exp(-img*a0a(ii)*DATA.L_D*1));
189
         otherwise
190
             error('Invalid MODEL.BC(3) %d',MODEL.BC(3));
191
        end
192
193
        %______%
        \% Equation 4: rotational degree of freedom at xi=1
194
195
        el=exp(1);
196
        switch MODEL.BC(4)
197
         % Dimensionless rotation G1 at xi=1
198
         case 0
199
           G1=MODEL.BCvalue(4);
200
           L(4,:)=g3*1.^3.*el+g1*1.*el;
201
           F(4)=G1-(B*g3*(img*a0a(ii)*DATA.L D).^3+(B*g1+g1*0.5)*img*a0a(ii)*DATA.L D)*...
202
              (exp(img*a0a(ii)*DATA.L D*1)-exp(-img*a0a(ii)*DATA.L D*1));
203
         % Dimensionless bending moment M1 at xi=1
204
         case 1
205
           M1=MODEL.BCvalue(4);
206
           L(4,:)=m*(g3*1.^4.*el+g1*1.^2.*el);
207
           F(4)=M1-m*(B*g3*(img*a0a(ii)*DATA.L D)^4+(B*g1+g1*0.5)*(img*a0a(ii)*DATA.L D)^2)
           *...
              (exp(img*a0a(ii)*DATA.L D*1)+exp(-img*a0a(ii)*DATA.L D*1));
209
         otherwise
```

```
210
            error('Invalid MODEL.BC(4) %d',MODEL.BC(4));
211
       end
212
213
       %_______
214
       % Solve and save
215
       A=inv(L)*F;
216
     %-----%Results%------%
217
218
     % Desplacement results
219
       u(:,ii)=A(1)*exp(l(1)*xi)+A(2)*exp(l(2)*xi)+...
220
              A(3)*exp(l(3)*xi)+A(4)*exp(l(4)*xi)+...
              B*(exp(img*a0a(ii)*DATA.L D*xi)+exp(-img*a0a(ii)*DATA.L D*xi));
222
223
     % Desplacement derivatives
224
       % du/dxi
225
       dudxi(:,ii) = A(1)*l(1)*exp(l(1)*xi)+A(2)*l(2)*exp(l(2)*xi)+...
226
                   A(3)*l(3)*exp(l(3)*xi)+A(4)*l(4)*exp(l(4)*xi)+...
227
                   B*(img*a0a(ii)*DATA.L_D)*(exp(img*a0a(ii)*DATA.L_D*xi)...
228
                   -exp(-img*a0a(ii)*DATA.L D*xi));
229
       % d^2u/dxi^2
230
       d2ud2xi(:,ii)=A(1)*l(1)^2*exp(l(1)*xi)+A(2)*l(2)^2*exp(l(2)*xi)+...
231
                   A(3)*l(3)^2*exp(l(3)*xi)+A(4)*l(4)^2*exp(l(4)*xi)+...
                   B*(img*a0a(ii)*DATA.L D)^2*(exp(img*a0a(ii)*DATA.L D*xi)...
                   +exp(-img*a0a(ii)*DATA.L D*xi));
       % d^3u/dxi^3
234
235
       d3ud3xi(:,ii)=A(1)*l(1)^3*exp(l(1)*xi)+A(2)*l(2)^3*exp(l(2)*xi)+...
236
                   A(3)*l(3)^3*exp(l(3)*xi)+A(4)*l(4)^3*exp(l(4)*xi)+...
                   B*(img*a0a(ii)*DATA.L_D)^3*(exp(img*a0a(ii)*DATA.L_D*xi)...
237
238
                   -exp(-img*a0a(ii)*DATA.L D*xi));
239
       % d^4u/dxi^4
       d4ud4xi(:,ii)=A(1)*l(1)^4*exp(l(1)*xi)+A(2)*l(2)^4*exp(l(2)*xi)+...
240
                   A(3)*1(3)^4*exp(1(3)*xi)+A(4)*1(4)^4*exp(1(4)*xi)+...
241
                   B*(img*a0a(ii)*DATA.L D)^4*(exp(img*a0a(ii)*DATA.L D*xi)...
242
243
                   +exp(-img*a0a(ii)*DATA.L D*xi));
244
245
             _____%
246
     % Dimentionless Rotation result
247
       theta(:,ii)=g3*d3ud3xi(:,ii)+g1*dudxi(:,ii)+g1*0.5*(img*a0a(ii)*DATA.L D)*...
248
                   (exp(img*a0a(ii)*DATA.L D*xi')-exp(-img*a0a(ii)*DATA.L D*xi'));
249
       %______%
250
251
     % Dimentionless Shear Force result
252
       V(:,ii)=v*(dudxi(:,ii)-theta(:,ii));
253
254
       255
     % Dimentionless Bending Moment result
256
       M(:,ii)=m*(g3*d4ud4xi(:,ii)+g1*d2ud2xi(:,ii)+gI*0.5*(img*a0a(ii)*DATA.L_D)^2*....
257
                (exp(img*a0a(ii)*DATA.L D*xi')+exp(-img*a0a(ii)*DATA.L D*xi')));
258
259
     8
                                                                       00
260
     end
261
262
     %-----%Output%-----%
263
264
     % Results with dimention
265
     switch dim criterion
266
         case 'adim'
        case 'dim'
267
268
            theta= theta./(DATA.L D*DATA.Dp);
269
            V=
                  DATA.Ep*DATA.Dp.*V;
270
                  DATA.Ep*DATA.Dp*DATA.Dp.*M;
            M=
271
         otherwise
272
            error('Invalid dim_criterion %s',dim_criterion);
273
     end
274
275
     % Output results
276
       AN(1,:,:,1)=real(u);
                               AN(1,:,:,2)=imag(u);
277
       AN(2,:,:,1)=real(theta);
                               AN(2,:,:,2)=imag(theta);
278
       AN(3,:,:,1)=real(V);
                              AN(3,:,:,2)=imag(V);
279
       AN(4,:,:,1)=real(M);
                              AN(4,:,:,2)=imag(M);
280
281
     % In case one only frequencie is used, output's re-dimensioned
282
       if length(freq)==1
```

```
283
            AN_=zeros(4,DATA.np,2);
284
            for kk=1:4
                                         % kk: variable (u, theta, V or M)
285
                for 11=1:2
                                        % ll: real or imaginary part
286
                     for ii=1:DATA.np
                                       % ii: depth in pile
287
                        AN_(kk,ii,ll)=+AN(kk,ii,1,ll);
288
                     end
289
                end
290
            end
291
            eval('clear AN'); AN(:,:,:)=+AN_(:,:,:);
292
293
            if Gradient
294
                G_=zeros(4, DATA.np, 2);
295
                for kk=1:4
                                             % kk: variable (u, theta, V or M)
296
                     for 11=1:2
                                             % ll: real or imaginary part
297
                         for ii=1:DATA.np
                                           % ii: depth in pile
                             G_(kk,ii,ll)=G(kk,ii,1,ll);
298
299
                         end
300
                     end
301
                end
302
                eval('clear G'); G(:,:,:)=+G_(:,:,:);
303
            end
304
       end
305
306
                                                                                   9
      8
307
      8
                                                                                   9
308
      end
309
310
```

```
function [SH,SV,SR,ST]=S Novak diameter(nu,xi,a0)
1
     % S Novak diameter Calculate soil dimensionless impedances for a infinite rigid
2
3
    % cylinder according to Novak, Nogami, Aboul-Ella, Dynamic soil reactions for
    % plane strain case, 1978. Dimensionless input and output using the cylinder
4
5
    % diameter and the shear modulus of the soil.
6
    2
7
    % INPUT:
    % nu: Poisson's ratio of the soil
8
9
    % xi: Hysteretic damping ratio of the soil
10
    % a0: dimensionless frequency (a0=omega*D/cs, D cyl. diameter, cs s. S-wave v.)
11
    2
    % OUTPUT:
12
13
    % SH: horizontal dimensionless impedance (KH=mu*SH)
14
    % SV: vertical dimensionless impedance (KV=mu*SV)
15
    % SR: rocking dimensionless impedance (KR=mu*D^2*SR)
16
    % ST: torsion dimensionless impedance (KT=mu*D^2*ST)
17
18
       img=0+1i;
19
       eta=sqrt(2*(1-nu)/(1-2*nu));
20
       a0a=a0/2*img/sqrt(1+2*xi*img);
21
       b0a=a0/2*img/eta/sqrt(1+2*xi*img);
22
     2
23
      Kao=besselk([0 1], a0a);
24
      K0a=Kao(1);
25
      K1a=Kao(2);
26
      Kbo=besselk([0 1], b0a);
27
      K0b=Kbo(1);
28
      K1b=Kbo(2);
29
      T=- (4*K1b*K1a+a0a*K1b*K0a+b0a*K0b*K1a)/...
30
          (b0a*K0b*K1a+a0a*K1b*K0a+b0a*a0a*K0b*K0a);
31
     2
       SH=pi*(a0/2).^2*T;
32
33
       SV=2*pi*(1+2*xi*img)*a0a*K1a/K0a;
34
       SR=pi/4*(1+2*xi*img)*(1+a0a*K0a/K1a);
35
       ST=pi/2*(1+2*xi*img)*(2+a0a*K0a/K1a);
36
     end
37
```

```
1
     function [BEM,pcase]=BEM_data(ii,w,dim_criterion,Ep,Dp)
 2
 3
     % - BEM model results data -
 4
     % Returns u, theta, V, M fron BEM model.
 5
     8
                                                8
 6
 7
     % Load the specific BEM case data
 8
     pcase=num2str(ii,'%.3d');
9
     fname=strcat('CASES 42/C',pcase);
10
     load(fname)
11
12
     % Write its results
13
     depth=eval(['C',pcase,'.depth']);
     freq=eval(['C',pcase,'.freq']);
14
15
     u=eval(['C',pcase,'.U']);
     th=eval(['C',pcase,'.th']);
16
17
     V=eval(['C',pcase,'.V']);
     M=eval(['C',pcase,'.M']);
18
19
20
     % Dimention(less) BEM data
21
     switch dim criterion
22
         case 'adim'
23
             [L D,Es Ep,nus]=DATA cases(ii);
                                                % th^* = L \cdot th
24
             th= (L D*Dp).*th;
             V= V.7(Ep*Dp);
                                               \% V \star = v / V
25
             M= M./(Ep*Dp*Dp);
26
                                                % M* = m / M
27
         case 'dim'
28
         otherwise
29
             error('Invalid dim criterion %s',dim criterion);
30
     end
31
32
33
     BEM total(1,:,:,1)=real(u);
                                                   BEM total (1,:,:,2)=imag(u);
     BEM_total(2,:,:,1)=real(th);
                                                   BEM_total(2,:,:,2)=imag(th);
34
35
     BEM_total(3,:,:,1)=real(V);
                                                   BEM_total(3,:,:,2)=imag(V);
36
     BEM_total(4,:,:,1)=real(M);
                                                  BEM total (4,:,:,2) = imag(M);
37
38
     BEM=zeros(4,length(depth),length(w),2);
39
     for ii=1:length(w)
40
         BEM(:,:,ii,:)=BEM total(:,:,w(ii),:);
41
     end
42
43
                                                8
     8
     00
                                                00
44
45
     end
```

```
1
     function [BEM]=BEM results(L D,Es Ep,nus,w,dim criterion,Ep,Dp)
2
     90
         BEM results
                                                                                     2
     % Returns u, theta, V, M fron BEM model.
 3
4
                                                                                     8
5
 6
     % Find out which case is this one
7
     load('CASES 42/BEMcases.mat')
8
     for ii=1:27
9
         if BEMcases(ii,1)==L D && BEMcases(ii,2)==Es Ep && BEMcases(ii,3)==nus
10
             pcase=num2str(ii,'%.3d');
11
             break
         end
12
13
     end
14
15
     % Shows error message and stops the program
16
     if isempty(pcase)
17
         error('Error reading BEMcases.mat')
18
     end
19
20
     % Load the specific BEM case data
21
     fname=strcat('CASES 42/C',pcase);
22
     load (fname)
23
24
     % Introducing data into variables
    depth=eval(['C',pcase,'.depth']);
u=eval(['C',pcase,'.U']);
V=eval(['C',pcase,'.V']);
25
                                          freq=eval(['C',pcase,'.freq']);
                                          th=eval(['C',pcase,'.th']);
26
27
                                          M=eval(['C',pcase,'.M']);
28
29
     % Dimention(less) BEM data
30
     switch dim criterion
31
         case 'adim'
32
             th= (L D*Dp).*th;
                                   % th^* = L \cdot th
             V= V./(Ep*Dp);
                                   % V* = v / v
33
             M= M./(Ep*Dp*Dp); % M* = m / M
34
35
         case 'dim'
36
         otherwise
37
             error('Invalid dim criterion %s',dim criterion);
38
     end
39
40
     % Write its results
41
42
     BEM_total(1,:,:,1)=real(u);
                                          BEM total (1,:,:,2)=imag(u);
43
     BEM_total(2,:,:,1)=real(th);
                                          BEM_total(2,:,:,2)=imag(th);
     BEM_total(3,:,:,1)=real(V);
44
                                          BEM total (3,:,:,2)=imag(V);
45
     BEM_total(4,:,:,1)=real(M);
                                          BEM_total(4,:,:,2)=imag(M);
46
47
48
     % Selecting the specified frequencies data
49
     BEM=zeros(4,length(depth),length(w),2);
50
     for ii=1:length(w)
         BEM(:,:,ii,:)=BEM_total(:,:,w(ii),:);
51
52
     end
53
54
     % *In case one only frequencie is used, output's re-dimensioned
55
     if size(w)==1
56
         BEM_(:,:,:)=BEM(:,:,1,:);
                                          eval('clear BEM');
57
         BEM=zeros(4,size(BEM ,2),2);
                                          BEM(:,:,:)=BEM (:,:,:);
58
     end
59
                                                                                     8
60
     2
61
     end
```

```
function [RMS,matrix]=E(input,err_up_down,BEM,differ)
 1
2
     8
         Relative E
        E calculates the relative error of the analitic model, using the BEM
 3
     2
     % model as reference, by an RMS. There are 4 kinds of normalization:
 4
5
     % 1) Pure BEM value
                                                  (for each depth and frequencie)
 6
     % 2) Maximun difference between AN and BEM (for each depth and frequencie)
7
     % 3) Maximun value of BEM along the pile length
                                                           (for each frequencie)
     % 4) Absolute value of the difference between the maximun and the minimum
8
9
     2
          BEM value along the pile length
                                                            (for each frequencie)
10
     9
                                                                                   00
11
12
     % Initializing variables
13
     num=err up down(2)+1-err up down(1); freq=size(BEM,3);
14
15
     % MAIN PROCESS
16
     if size(freq)==1
17
         epsilon=1e-12;
                                             den=zeros(4,num,2);
18
         matrix=zeros(4,num,2);
                                             vector=zeros(num,1);
19
         RMS=zeros(4,2);
20
21
         switch input
22
                                                           8
               Error kind 1 % Pure BEM value
23
             8
24
             case 1
25
                                         % kk: variable (u, theta, V or M)
                 for kk=1:4
                     for 11=1:2
                                         % ll: real or imaginary part
26
27
                          for ii=1:num
                                        % ii: depth in pile
28
                              den(kk,ii,ll)=abs(BEM(kk,ii,ll));
29
                              if den(kk,ii,ll)<epsilon</pre>
30
                                  den(kk,ii,ll)=1;
31
                              end
32
                              matrix(kk,ii,ll)=differ(kk,ii,ll)/den(kk,ii,ll);
33
                          end
34
                          vector(:)=matrix(kk,:,ll);
35
                          RMS(kk,ll)=rms(vector);
36
                      end
37
                 end
38
             8
                                                          8
39
             % Error kind 2 % Maximun difference between AN and BEM
40
             case 2
41
                 for kk=1:4
                                         % kk: variable (u, theta, V or M)
42
                                         % ll: real or imaginary part
                      for 11=1:2
                          for ii=1:num % ii: depth in pile
43
44
                              den(kk,ii,ll)=max(abs(differ(kk,:,ll)));
45
                              if den(kk,ii,ll)<epsilon</pre>
46
                                  den(kk,ii,ll)=1;
47
                              end
48
                              matrix(kk,ii,ll)=differ(kk,ii,ll)/den(kk,ii,ll);
49
                          end
50
                          vector(:)=matrix(kk,:,ll);
51
                          RMS(kk,ll)=rms(vector);
52
                      end
53
                 end
54
                                                          00
55
             % Error kind 3 % Maximun value of BEM along the pile length
56
             case 3
57
                 for kk=1:4
                                         % kk: variable (u, theta, V or M)
58
                      for 11=1:2
                                         % ll: real or imaginary part
                          for ii=1:num % ii: depth in pile
59
60
                              den(kk,ii,ll)=max(abs(BEM(kk,:,ll)));
61
                              if den(kk,ii,ll)<epsilon</pre>
62
                                  den(kk,ii,ll)=1;
63
                              end
64
                              matrix(kk,ii,ll)=differ(kk,ii,ll)/den(kk,ii,ll);
65
                          end
66
                          vector(:)=matrix(kk,:,ll);
67
                          RMS(kk,ll)=rms(vector);
68
                      end
69
                 end
70
                                                           8
71
               Error kind 4 % Absolute value of the difference between the maximun
             8
72
                             % and the minimum BEM value along the pile length
73
             case 4
```

```
74
                   for kk=1:4
                                           % kk: variable (u, theta, V or M)
 75
                       for 11=1:2
                                          % ll: real or imaginary part
                           for ii=1:num % ii: depth in pile
 76
 77
                                den(kk,ii,ll)=abs(max(BEM(kk,:,ll))-min(BEM(kk,:,ll)));
 78
                                if den(kk,ii,ll)<=epsilon</pre>
 79
                                    den(kk,ii,ll)=1;
 80
                                end
 81
                                matrix(kk,ii,ll)=differ(kk,ii,ll)/den(kk,ii,ll);
 82
                           end
 83
                           vector(:)=matrix(kk,:,ll);
 84
                           RMS(kk,ll)=rms(vector);
 85
                       end
                   end
 86
 87
               2
                                                            8
 88
              otherwise
 89
                   error('invalid E input value')
 90
          end
 91
      else
 92
          epsilon=1e-12;
                                                   den=zeros(4,num,freq,2);
          matrix=zeros(4,num,freq,2);
 93
                                                   vector=zeros(num,1);
 94
          RMS=zeros(4, freq, 2);
 95
 96
          switch input
 97
                                                             8
 98
               % Error kind 1 % Pure BEM value
 99
              case 1
100
                   for kk=1:4
                                               % kk: variable (u, theta, V or M)
                       for jj=1:freq
                                               % jj: frequencie
                           for 11=1:2
                                               % ll: real or imaginary part
103
                                for ii=1:num
                                               % ii: depth in pile
104
                                    den(kk,ii,jj,ll)=abs(BEM(kk,ii,jj,ll));
105
                                    if den(kk,ii,jj,ll)<epsilon</pre>
                                        den(kk,ii,jj,ll)=1;
107
                                    end
108
                                    matrix(kk,ii,jj,ll)=differ(kk,ii,jj,ll)/den(kk,ii,jj,ll);
109
                                end
110
                                vector(:)=matrix(kk,:,jj,ll);
111
                                RMS(kk,jj,ll)=rms(vector);
112
                           end
                       end
113
                   end
114
               2
                                                             0
              % Error kind 2 % Maximun difference between AN and BEM
116
              case 2
118
                   for kk=1:4
                                               \% kk: variable (u, theta, V or M)
119
                       for jj=1:freq
                                               % jj: frequencie
120
                           for 11=1:2
                                               % ll: real or imaginary part
121
                                for ii=1:num
                                               % ii: depth in pile
122
                                    den(kk,ii,jj,ll)=max(abs(differ(kk,:,jj,ll)));
123
                                    if den(kk,ii,jj,ll)<epsilon</pre>
                                        den(kk,ii,jj,ll)=1;
124
125
                                    end
126
                                    matrix(kk,ii,jj,ll)=differ(kk,ii,jj,ll)/den(kk,ii,jj,ll);
127
                                end
128
                                vector(:)=matrix(kk,:,jj,ll);
129
                                RMS(kk,jj,ll)=rms(vector);
130
                           end
131
                       end
132
                   end
133
                                                             0
134
               % Error kind 3 % Maximun value of BEM along the pile length
135
              case 3
136
                   for kk=1:4
                                               % kk: variable (u, theta, V or M)
137
                       for jj=1:freq
                                               % jj: frequencie
138
                           for 11=1:2
                                               % ll: real or imaginary part
139
                                for ii=1:num % ii: depth in pile
140
                                    den(kk,ii,jj,ll)=max(abs(BEM(kk,:,jj,ll)));
141
                                    if den(kk,ii,jj,ll)<epsilon</pre>
142
                                        den(kk,ii,jj,ll)=1;
143
                                    end
144
                                    matrix(kk,ii,jj,ll)=differ(kk,ii,jj,ll)/den(kk,ii,jj,ll);
145
                                end
146
                                vector(:)=matrix(kk,:,jj,ll);
```

147 RMS(kk,jj,ll)=rms(vector); 148 end end 149 end 150 151 ę 8 152 kind 4 % Absolute value of the difference between the maximun % Error 153 8 and the minimum BEM value along the pile length 154 case 4 155 for kk=1:4 % kk: variable (u, theta, V or M) 156 for jj=1:freq % jj: frequencie 157 % ll: real or imaginary part **for** 11**=**1:2 % ii: depth in pile 158 for ii=1:num 159 den(kk,ii,jj,ll)=abs(max(BEM(kk,:,jj,ll))-min(BEM(kk,:,jj, 11))); 160 if den(kk,ii,jj,ll)<=epsilon</pre> 161 den(kk,ii,jj,ll)=1; 162 end 163 matrix(kk,ii,jj,ll)=differ(kk,ii,jj,ll)/den(kk,ii,jj,ll); 164 end 165 vector(:)=matrix(kk,:,jj,ll); 166 RMS(kk,jj,ll)=rms(vector); 167 end 168 end 169 end 170 2 9 171 otherwise 172 error('invalid E input value') 173 end 174 end 175 8 8 176 8 8 177 end 178

```
1
     function differ=E_absolute(AN,BEM,err_up_down)
         E absolute
2
     8
                                                                                    8
 3
     8
         Calculates the absolute error, or difference, between AN and BEM.
4
     9
                                                                                    8
5
 6
     % Initializing variables
7
     num=err up down(2)+1-err up down(1);
8
9
     % MAIN PROCESS
10
     if ndims(BEM) == 3;
11
         differ=zeros(4,num,2);
12
13
         % Calculate the difference between AN and BEM
14
         for kk=1:4
                                       % kk: variable (u, theta, V or M)
15
             for 11=1:2
                                       % ll: real or imaginary part
16
                  for ii=1:num
                                      % ii: depth in pile
17
                      differ(kk,ii,ll) = abs(AN(kk,err_up_down(1)+ii-1,ll)...
18
                                               - BEM(kk,err up down(1)+ii-1,ll));
19
                  end
20
             end
21
         end
22
     else
23
         freq=size(BEM,3);
24
         differ=zeros(4,num,freq,2);
25
26
         \% Calculate the difference between AN and BEM
27
         for kk=1:4
                                       % kk: variable (u, theta, V or M)
28
             for jj=1:freq
                                       % jj: frequencie
                  for 11=1:2
29
                                       % ll: real or imaginary part
                      for ii=1:num
30
                                      % ii: depth in pile
31
                          differ(kk,ii,jj,ll)=abs(AN(kk,err_up_down(1)+ii-1,jj,ll)...
32
                              -BEM(kk,err up down(1)+ii-1,jj,ll));
33
                      end
34
                 end
             end
35
         end
36
37
     end
38
39
     8
                                                                                    9
40
                                                                                    8
     응
41
     end
42
43
44
45
     function [L_D,Es_Ep,nus]=DATA_cases(ii)
46
                                                       00
     8
47
48
     % Find out which case is this one
49
     load('CASES 42/BEMcases.mat')
50
     L D= BEMcases(ii,1);
51
52
     Es Ep=BEMcases(ii,2);
53
     nus= BEMcases(ii,3);
54
55
     clear('CASES/BEMcases.mat')
56
                                                       8
     8
57
     00
                                                       2
58
     end
```

```
1
     function [Sp_opt,AN,err,differ]=Sp_sweeper(DATA,MODEL,C)
2
                                                                                  2
        Sp sweeper
 3
 4
     %% Initializing variables %%
5
     comp=C.err component;
 6
7
     % Preparing Kp to be used in optimization
8
     if isempty(find(C.Sp==0.,1))
9
         len=length(C.Sp)+1;
10
         Sp calc=zeros(len,1);
11
         Sp calc(1)=0.;
12
         for ii=1:length(C.Sp); Sp_calc(ii+1)=C.Sp(ii); end
13
     else
14
         Sp calc=C.Sp;
15
     end
16
17
     % Initializing matrixes that need it
18
     BEM=
              zeros(4,DATA.np,length(C.w),2);
19
     % AN =
                 zeros(4,DATA.np,length(C.w),2);
20
    AN=
               zeros(length(Sp_calc),4,DATA.np,length(C.w),2);
               zeros(length(Sp_calc),4,DATA.np,length(C.w),2);
21
     differ=
22
               zeros(length(Sp_calc),4,2);
    err =
23
               zeros(length(Sp_calc),4,length(C.w),2);
     err=
24
     % err_min= zeros(length(Kp_calc),length(C.w));
25
     err min= zeros(length(Sp calc),4,2);
26
     Sp opt=
               zeros(length(C.w),1);
27
28
     % MAIN PROCESS %
29
    for jj=1:length(C.w)
         %% BEM data %%
30
31
         BEM_=BEM_results(DATA.L_D,DATA.Es_Ep,DATA.nus,C.w(jj),...
32
                                         C.dim criterion, DATA.Ep, DATA.Dp);
33
         BEM(:,:,jj,:)=BEM (:,:,:);
34
35
         C.w(jj)
36
         for ii=1:length(Sp_calc)
37
             AN =
                              ANALITIC (DATA, MODEL, Sp calc(ii), C.w(jj), C.dim criterion);
38
             AN(ii,:,:,jj,:)=AN_(:,:,:);
39
40
         %% Error estimation %%
                                   E absolute(AN_,BEM_,C.up_down);
41
             differ =
42
             differ(ii,:,:,jj,:)= differ_(:,:,:);
                                   E(C.err_kind,C.up_down,BEM,differ );
43
             err_(ii,:,:)=
44
             err(:,:,jj,:)=
                                   err (:,:,:);
45
         end
46
47
         %% Kp optimization: sweeping %%
           %Finding e min among all Kp calculated%
48
49
         for kk=1:4;
50
             e_min=min(err_(:,kk,comp)); i_Sp=find(err_(:,kk,comp)==e_min,1)
51
             err min(i Sp,kk,comp)=e min;
52
         end
53
54
           %Finding optimal Kp for specific variable% %
55
         Sp opt(jj)=Sp calc(find(err (:,C.Sp v,comp)==err min(C.Sp v,jj),1));
56
57
         indexes=err ==err min;
58
         Sp_opt(jj)=Sp_calc(i_Sp);
59
     end
60
61
     8
                                                                                  8
62
     2
                                                                                  0
63
     end
64
65
```

```
1
     function [Sp,AN,differ,err_,ANw,errW,Gr,sens,output2]=...
2
                 Sp fmincon(DATA, MODEL, C, frequencie, Sp0)
 3
          Sp fmincon
                                                                                   8
 4
     8
5
     9
 6
     9
                                                                                   8
7
       %Auxiliar Variables%
                                                                     8
8
     2
9
     % Optimizer variables
10
     lb=-1e-15; ub=Inf;
                              % Lower and upper bounds
11
     % 'interior-point', 'sqp', 'trust-region-reflective'
12
     opts=optimoptions('fmincon',...
13
         'Display','iter'); % 'iter-detailed'
14
15
     8
          'TolFun', 1e-10,...
16
     9
          'TolX', 1e-10,...
17
     8
           'TolCon', 1e-15,...
18
19
         opts=optimoptions(opts,'FinDiffType','central');
20
21
           opts=optimoptions(opts,'FinDiffType','central',...
     8
                                    'Algorithm', 'sqp',...
22
     8
23
                                    'ScaleProblem', 'obj-and-constr');
     8
24
25
26
         %Main function%
                                                                                   8
      [Sp,fval,exitflag,output,lambda,gr]=...
27
28
         fmincon(@RelativeData,Sp0,[],[],[],[],lb,ub,[],opts);
29
30
             %Nested function%
                                                                        8
31
         function [f,df]=RelativeData(Sp)
32
             if Sp<-1e-30
33
                 \% Just to be sure it does NOT keep any value with Sp<0
34
                 f=+Inf; df=+Inf;
35
             else
36
                     %Analitic model%
                                                                        9
37
                  [AN,Gr] = ANALITIC (DATA, MODEL, Sp, frequencie, C.dim criterion, ...
38
                              C.Gradient);
                 if Sp==0. % Winkler data. If not, Pasternak data
39
40
                      ANw=AN;
41
                 end
42
                 % %BEM model data%_
43
                                                                        00
                         BEM results (DATA.L D, DATA.Es Ep, DATA.nus,...
44
                 [BEM]=
45
                               frequencie,C.dim_criterion,DATA.Ep,DATA.Dp);
46
47
                    %Objetive function%
                 2
                                                                        9
48
                 differ= E absolute(AN,BEM,C.up down);
49
                 [err_,matrix] = E(C.err_kind,C.up_down,BEM,differ);
50
                 if Sp==0. % Winkler data error. If not, Pasternak data
                     errW=err ;
51
52
                 end
53
                 f=err (C.Sp v,C.err component); % OUTPUT VALUE
54
             end
55
         end
56
                                                                        8
57
58
     % Rerun might give better results, more accurate
59
     Sp0=Sp;
60
61
     [Sp,fval2,exitflag2,output2,lambda2,gr2]=...
62
         fmincon(@RelativeData,Sp0,[],[],[],[],lb,ub,[],opts);
63
64
     8
                                                                                   8
65
     S
                                                                                   8
66
     end
```

```
1
     function OUT variables (P, ccases, BEM, AN w, AN p, depth, np, comp)
 2
 3
 4
     depth=zeros(length(ccases),np);
5
 6
     % Plotting VARIABLE
7
     for i case=ccases
8
         for ii=1:4
9
             for jj=1:length(P.w)
10
                 for kk=1:4
11
                      if P.variable(kk)==1
12
                          figure
13
                                                    ,depth(i_case,:),'.-r'); hold on
14
                          plot( BEM(kk,:,jj,1)
15
                          plot(AN_w(kk,:,P.w(jj),1),depth(i_case,:),'b');
                          plot(AN_p(kk,:,P.w(jj),1),depth(i_case,:),'g');
16
                                                                              hold off
17
                          axis tight
18
                          legend('BEM-BEM','Winkler','Pasternak')
19
                          box on
20
                      end
21
                 end
22
             end
23
         end
24
     end
25
                                                      8
     % Plot VARIABLE MIX
26
27
     if P.variable(5)==1
28
29
     8
           figure
30
31
         for i case=ccases
32
             depth(i_case,:)=linspace(0,-1,np);
33
             vector=zeros(4,np);
34
35
             vector 0=zeros(4,np);
             vector BEM=zeros(4,np);
36
37
38
             for jj=1:length(P.w)
39
                 size(AN p);
40
                 size(AN w);
41
42
                 vector
                            (:,:) = AN_p(i_case,:,:,jj,comp);
                 vector_0 (:,:)= AN_w(i_case,:,:,jj,comp);
43
44
                 vector BEM(:,:)= BEM (i case,:,:,jj,comp);
45
46
                 figure
47
                 h1=subplot(1,4,1);
48
49
                 plot(h1, vector_0(1,:), depth(i_case,:),'b');
                                                                     hold on
50
                 plot(h1, vector (1,:), depth(i_case,:),'g');
                 plot(h1, vector_BEM(1,:),depth(i_case,:),'.-r'); hold off
51
                                           °/ (\xi)'); title(h1,'Desplazamiento (u)');
52
                 ylabel(h1,'Profundidad,
53
                           xlim([-1.5,1.5]);
                 box on;
54
                 ylim([min(depth(i case,:)),max(depth(i case,:))]);
55
56
                 h2=subplot(1,4,2);
57
                 plot(h2, vector_0(2,:), depth(i_case,:),'b');
                                                                     hold on
58
                 plot(h2, vector(2,:),
                                           depth(i case,:),'g');
59
                 plot(h2, vector_BEM(2,:),depth(i_case,:),'.-r'); hold off
60
                 title(h2,'Giro (\theta)'); box on;
61
                 xlim([-12,12]);
62
                 ylim([min(depth(i_case,:)),max(depth(i_case,:))]);
63
64
                 h3=subplot(1,4,3);
65
                 plot(h3, vector_0(3,:), depth(ccases==i_case,:),'b');
                                                                             hold on
66
                 plot(h3, vector(3,:),
                                           depth(i case,:),'g');
67
                 plot(h3, vector_BEM(3,:),depth(i_case,:),'.-r'); hold off
                 title(h3, 'Cortante (V) '); box on;
68
69
                 xlim([-0.025,0.025]);
70
                 ylim([min(depth(i case,:)),max(depth(i case,:))]);
71
72
73
                 h4=subplot(1,4,4);
```

74		<pre>plot(h4, vector 0(4,:), depth(ccases==i case,:),'b'); hold on</pre>
75		<pre>plot(h4, vector(4,:), depth(i case,:),'g');</pre>
76		<pre>plot(h4, vector BEM(4,:),depth(i case,:),'r'); hold off</pre>
77		title(h4,'Flector (M)'); box on;
78		<pre>xlim([-0.025,0.025]);</pre>
79		<pre>ylim([min(depth(i case,:)),max(depth(i case,:))]);</pre>
80		<pre>legend('Winkler', 'Pasternak', 'BEM-BEM', 'Location', 'northeast')</pre>
81		end
82	end	
83	end	
84		
85	00	8
86	% 	
87	end	

```
1
    function OUT error (P,ccases,err w,err p,depth,np,a0 total,w,err component,...
2
                        Sp opt, Sp v)
3
                                                                              8
4
5
    nw=15.;
6
    a0=(0.01:(1-0.01)/(nw-1):1);
7
    8
9
    % Plot variable error (u theta, V, M alone)
10
    for i var=1:4
11
        if P.Err a0(i var)==1
12
            vector errW=zeros(length(ccases),length(w));
13
            vector errP=zeros(length(ccases),length(w));
14
15
            figure;
16
            for ii=1:length(ccases)
17
                                                                                  8
18
                vector_errW(ii,:)=err_w(ii,i_var,:,err_component);
19
                vector errP(ii,:)=err p(ii,i var,:,err component);
20
21
                switch i var % only adimentional values
22
                    case 1; ymax=0; ylabel(gca,'u error');
                    case 2; ymax=0; ylabel(gca,'\theta error');
case 3; ymax=0; ylabel(gca,'V error');
23
24
                    case 4; ymax=0; ylabel(gca,'M error');
25
26
                end
27
28
                plot(gca,a0,vector errW(ii,:),'*-b');
                                                            hold on
                plot(gca,a0,vector_errP(ii,:),'*-g');
29
                                                           hold off
30
                xlim([min(a0),max(a0)]); ylim([0.,ymax]); box on;
31
                xlabel(gca,'a_{0}^{*}');
32
            end
        end
33
34
    end
    35
36
    % SubPlot variable errors MIX
37
    if P.Err a0(5)==1
38
        vector errW1=zeros(length(ccases),length(w));
39
        vector errW2=zeros(length(ccases),length(w));
40
        vector errW3=zeros(length(ccases),length(w));
41
        vector_errW4=zeros(length(ccases),length(w));
42
        vector_errP1=zeros(length(ccases),length(w));
43
        vector errP2=zeros(length(ccases),length(w));
44
        vector errP3=zeros(length(ccases),length(w));
45
        vector_errP4=zeros(length(ccases),length(w));
46
47
        figure;
48
49
        for ii=1:length(ccases)
50
51
            switch ii
52
                        Linestyle='-'; % Color=''
                case 1;
53
                         Linestyle='--'; % Color=''
                case 2;
                         Linestyle='-.'; % Color=''
54
                case 3;
55
                otherwise
56
                    message ('Are you sure? Have you cheked the amount of cases asked to
                    plot?')
57
            end
58
59
60
            vector_errW1(ii,:)=err_w(ii,1,:,1); vector_errP1(ii,:)=err_p(ii,1,:,1);
61
62
            h2=subplot(4,1,1); hold on
63
            plot(h2,a0,vector_errW1(ii,:),'LineStyle',Linestyle,'Color','b');
            plot(h2,a0,vector errP1(ii,:),'LineStyle',Linestyle,'Color','g');
64
65
            xlim([min(a0),max(a0)]); ylim([0.,0.3]); ylabel(h2,'u error');
66
            box on; hold off
67
            vector errW2(ii,:)=err w(ii,2,:,1); vector errP2(ii,:)=err p(ii,2,:,1);
68
69
70
            h3=subplot(4,1,2); hold on
            plot(h3,a0,vector errW2(ii,:),'LineStyle',Linestyle,'Color','b');
71
72
            plot(h3,a0,vector errP2(ii,:),'LineStyle',Linestyle,'Color','g');
```

73	<pre>xlim([min(a0),max(a0)]); ylim([0.,0.3]); ylabel(h3,'\theta error');</pre>
74	box on; hold off
75	୫ ୫
76	<pre>vector errW3(ii,:)=err w(ii,3,:,1); vector errP3(ii,:)=err p(ii,3,:,1);</pre>
77	
78	h4=subplot(4,1,3); hold on
79	<pre>plot(h4,a0,vector errW3(ii,:),'LineStyle',Linestyle,'Color','b');</pre>
80	<pre>plot(h4,a0,vector errP3(ii,:),'LineStyle',Linestyle,'Color','g');</pre>
81	<pre>xlim([min(a0),max(a0)]); ylim([0.,0.3]); ylabel(h4,'V error');</pre>
82	box on; hold off
83	ଞ
84	<pre>vector errW4(ii,:)=err w(ii,4,:,1); vector errP4(ii,:)=err p(ii,4,:,1);</pre>
85	
86	h5=subplot(4,1,4); hold on
87	<pre>plot(h5,a0,vector errW4(ii,:),'LineStyle',Linestyle,'Color','b');</pre>
88	<pre>plot(h5,a0,vector errP4(ii,:),'LineStyle',Linestyle,'Color','g');</pre>
89	xlabel(h5,'a {0}^{{*}}')
90	xlim([min(a0),max(a0)]);
91	box on; hold off
92	end
93	end
94	ୡୄ୰ୡୡୄ୰ୡୄୡୄ୰ୡୡୄ୰ୡୡୄ୰ୡୡୡୡୡୡୡୡୡୡୡୡୡୡୡୡୡୡୡ
95	
96	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
97	ξŞ
98	end

```
1
    function OUT Sp(P,ccases,Sp opt,err w,err p,depth,np,a0 total,w,err component)
2
3
4
    nw=15.;
5
    a0=(0.01:(1-0.01)/(nw-1):1);
6
7
    % vector w=zeros(15,1); vector p=zeros(15,1);
8
    % vector w(:)=err w(1,4,:,1); vector p(:)=err p(1,4,:,1);
    % figure; hold on; plot(a0,vector w, '*-r'); plot(a0,vector p, '*-');
9
10
    % hold off; grid on; ylim([0.,0.25])
11
    12
13
    % Plot Sp_opt
14
    if P.Sp_a0
15
16
        figure;
17
        hold on;
18
        if algo
19
            for i case=1:length(ccases)
                [L D,Es Ep,nus]=DATA cases(i case);
21
22
                switch L D
                    case 20;
23
                                Spec LD='*';
24
                    case 15;
                               Spec LD='s';
25
                    case 10;
                                Spec LD='o';
26
                end
27
                switch Es Ep
28
                    case 0.020; Spec EsEp='--';
29
                    case 0.010; Spec EsEp='-';
                    case 0.005; Spec_EsEp=':';
30
31
                end
32
                switch nus
33
                    case 0.30;
                               Spec nus='m';
34
                    case 0.40; Spec nus='k';
35
                    case 0.49; Spec nus='b';
36
                end
37
38
                Specifier=[Spec LD Spec EsEp Spec nus];
39
40
                plot(a0,Sp opt(i case,:),Specifier);
            end
41
42
        else
43
            for i case=1:length(ccases)
44
                switch i_case
                    case 1; Linestyle='-'; % Color=''
45
                    case 2; Linestyle='--'; % Color=''
46
47
                    case 3; Linestyle='-.'; % Color=''
48
                    otherwise
49
                       message('Have you cheked the amount of cases asked to plot?')
50
                end
51
52
                plot(a0,Sp opt(i case,:),'LineStyle',Linestyle,'Color','r');
53
            end
54
        end
55
        xlabel(gca,'a {0}^{*}'); ylabel(gca,'S {P}')
56
        xlim([min(a0),max(a0)]); ylim([0.,15.]);
        set(gca,'XLim',[0.01 1],'YLim',[0. 15.],...
57
             'YTick',[0. 2.50 5. 7.5 10 12.5 15 17.5 20. 22.5 25.],...
58
59
            'YTickLabel', {'0', '2.5', '5.0', '7.5', '10.0', '12.5', '15.0'});
60
61
        hold off; box on;
62
    end
63
64
    65
    % Plot Sp opt + variable errors
66
    if P.SpErr a0
67
        vector errW1=zeros(length(ccases),length(w));
68
        vector errW2=zeros(length(ccases),length(w));
69
        vector errW3=zeros(length(ccases),length(w));
70
        vector errW4=zeros(length(ccases),length(w));
71
        vector errP1=zeros(length(ccases),length(w));
72
        vector errP2=zeros(length(ccases),length(w));
73
        vector errP3=zeros(length(ccases),length(w));
```

```
74
         vector errP4=zeros(length(ccases),length(w));
 75
 76
 77
         for ii=1:length(ccases)
 78
             figure;
 79
             if length(ccases) == 1;
                                                         vector Sp=Sp opt;
                                                                               else
 80
                 vector Sp=zeros(size(Sp opt,2),1);
                                                         vector Sp(:)=Sp opt(ii,:);
 81
             end
 82
                                             plot(h1,a0,vector Sp,'*-r');
             h1=subplot(5,1,1); hold on;
             xlim([min(a0),max(a0)]); ylim([0.,15.]); ylabel(h1,'Sp');
 83
 84
             box on; hold off
 85
             8
             vector errW1(ii,:)=err w(ii,1,:,1); vector errP1(ii,:)=err p(ii,1,:,1);
 86
 87
 88
             h2=subplot(5,1,2); hold on
             plot(h2,a0,vector_errW1(ii,:),'*-');
 89
 90
             plot(h2,a0,vector_errP1(ii,:),'*-g');
             xlim([min(a0),max(a0)]); ylim([0.,0.3]); ylabel(h2,'u error');
 91
 92
             box on; hold off
 93
             00
             vector_errW2(ii,:)=err_w(ii,2,:,1); vector_errP2(ii,:)=err p(ii,2,:,1);
 94
 95
 96
             h3=subplot(5,1,3); hold on
 97
             plot(h3,a0,vector errW2(ii,:),'*-');
             plot(h3,a0,vector errP2(ii,:),'*-g');
 98
 99
             xlim([min(a0),max(a0)]); ylim([0.,0.3]); ylabel(h3,'\theta error');
100
             box on; hold off
             %
101
             vector errW3(ii,:)=err w(ii,3,:,1); vector errP3(ii,:)=err p(ii,3,:,1);
102
103
104
             h4=subplot(5,1,4); hold on
105
             plot(h4,a0,vector_errW3(ii,:),'*-');
             plot(h4,a0,vector_errP3(ii,:),'*-g');
106
107
             xlim([min(a0),max(a0)]); ylim([0.,0.3]); ylabel(h4,'V error');
108
             box on; hold off
109
             8
             vector errW4(ii,:)=err w(ii,4,:,1); vector errP4(ii,:)=err p(ii,4,:,1);
110
111
112
             h5=subplot(5,1,5); hold on
             plot(h5,a0,vector_errW4(ii,:),'*-');
113
             plot(h5,a0,vector_errP4(ii,:),'*-g');
                                                    xlabel(h5,'a_{0}^{*}')
114
             xlim([min(a0),max(a0)]); ylim([0.,0.3]); ylabel(h5,'M error');
115
116
             box on; hold off
117
         end
118
     end
119
      120
121
122
      8
                                                                               8
123
      8
                                                                               8
124
      end
```

```
1
     function OUT write (np,nw,ccases,opt mode,Sp v,frec,up down,W,AN w,AN p,...
2
                         err_w,err_p,Sp_opt)
 3
         Write Results
                                                                               8
    % Prepares and saves data from Sp OPTIMIZER in doc (ASCII characters).
 4
5
                                                                               8
 6
7
    % % Initializing variables
8
9
    % Adimentional frequencie
10
    a0=(0.01:(1-0.01)/(nw-1):1);
11
12
    % Depth points number
13
    num=up down(2)+1-up down(1);
14
15
    % Choosing output folder
16
    switch opt_mode
17
         case 'fmincon'; method='Fmincon_method';
18
         case 'sweeper'; method='Sweeper method';
19
    end
21
    switch Sp v
22
         case 1; VarRef='Opt u';
                                   case 2; VarRef='Opt theta';
23
         case 3; VarRef='Opt V';
                                   case 4; VarRef='Opt M';
24
    end
25
26
    % Checks final folder existence and Prepares path for output file
27
    cf=pwd;
28
    if exist(method,'dir')~=7; mkdir([cf '/' method]);
                                                                     end
    if exist(VarRef,'dir')~=7; mkdir([cf '/' method '/' VarRef]); end
29
30
31
32
    % % ACTUALLY WRITING
33
    for i cases=1:length(ccases)
34
         % Preparing dimentional frequencie vector
35
        [L D,Es Ep,nus]=DATA cases(i cases);
        rhos=1750.;
36
                          Dp=0.6;
37
        Es=Es Ep*3e10;
                          mu=Es/2/(1+nus); cs=sqrt(mu/rhos);
38
        wmin=0.01*cs/Dp; wmax=cs/Dp;
39
        w= (wmin:(wmax-wmin)/(nw-1):wmax);
40
41
        % Preparing adimentional frequencie vector
42
        a0=(0.01:(1-0.01)/(nw-1):1);
43
44
        % Preparing pile depth vector
45
        actual_depth=(0.:(L_D*Dp)/(np-1):(L_D*Dp));
46
        depth=zeros(length(up_down(1):up_down(2)),1);
47
        for ii=up_down(1):up_down(2); depth(ii)=actual_depth(ii); end
48
49
        % Which case are we writing on...
50
        pcase=num2str(ccases(i cases),'%.3d');
51
52
        if W.Winkler
53
            % Selecting output Winkler data to write
54
            docW=zeros(length(frec)*num,12);
55
             for jj=1:length(frec)
56
                 docW((1+(jj-1)*num):(num+(jj-1)*num),1)=jj*ones(num,1);
57
                 docW((1+(jj-1)*num):(num+(jj-1)*num),2)=a0(jj)*ones(num,1);
58
                 docW((1+(jj-1)*num):(num+(jj-1)*num),3)=w(jj)*ones(num,1);
59
                 docW((1+(jj-1)*num):(num+(jj-1)*num),4)=depth';
60
                 for kk=1:4
61
62
                     for 11=1:2
63
                         docW((1+(jj-1)*num):(num+(jj-1)*num),5+(kk-1)*2+(ll-1))=...
64
                             AN_w(i_cases,kk,:,jj,ll);
65
                     end
66
                 end
67
            end
68
69
            % Saving Winkler data in .txt file
            eval(['cd ' method '/' VarRef]);
70
71
            fileW=fopen(['AN' pcase '_Winkler.txt'],'w');
72
            73
            nrows=size(docW,1);
```

```
74
            for row=1:nrows
 75
                if row==nrows
76
                   77
                end
78
                fprintf(fileW,formatW,docW(row,:));
79
            end
80
            fclose(fileW);
81
            eval('cd ..'); eval('cd ..');
82
         end
83
84
        if W.Pasternak
85
            % Selecting output Pasternak data to write
86
            docP=zeros(length(frec)*num,12);
87
            for jj=1:length(frec)
88
                docP((1+(jj-1)*num): (num+(jj-1)*num), 1)=jj*ones(num, 1);
89
                docP((1+(jj-1)*num):(num+(jj-1)*num),2)=a0(jj)*ones(num,1);
 90
                docP((1+(jj-1)*num):(num+(jj-1)*num),3)=w(jj)*ones(num,1);
 91
                docP((1+(jj-1)*num):(num+(jj-1)*num),4)=depth';
 92
 93
                for kk=1:4
 94
                   for 11=1:2
95
                       docP((1+(jj-1)*num):(num+(jj-1)*num),5+(kk-1)*2+(ll-1))=...
96
                          AN p(i cases, kk,:, jj, ll);
97
                   end
                end
98
99
            end
100
            % Saving Pasternak data in .txt file
102
            eval(['cd ' method '/' VarRef]);
103
            fileP=fopen(['AN' pcase ' Pasternak.txt'],'w');
104
            105
            nrows=size(docP,1);
106
            for row=1:nrows
                if row==nrows
108
                   109
                end
110
                fprintf(fileP,formatP,docP(row,:));
111
            end
112
            fclose(fileP);
113
            eval('cd ...'); eval('cd ...');
114
         end
115
        if W.E w
116
            % Selecting output Winkler Error data to write
118
            docEw=zeros(length(frec),11);
119
            for jj=1:length(frec)
120
                docEw(jj,1)=jj; docEw(jj,2)=a0(jj); docEw(jj,3)=w(jj);
121
                for kk=1:4
122
                   for 11=1:2
123
                       docEw(jj,4+(kk-1)*2+(ll-1))=err w(i cases,kk,jj,ll);
124
                   end
125
                end
126
            end
127
128
            % Saving Winkler Error data in .txt file
129
            eval(['cd ' method '/' VarRef]);
130
            fileEw=fopen(['AN' pcase '_ErrorW.txt'],'w');
131
            132
            nrows=size(docEw,1);
133
            for row=1:nrows
134
                if row==nrows
135
                   136
                end
137
                fprintf(fileEw,formatEw,docEw(row,:));
138
            end
139
            fclose(fileEw);
140
            eval('cd ...'); eval('cd ...');
141
         end
142
143
         if W.E p
144
            % Selecting output Pasternak Error data to write
145
            docEp=zeros(length(frec),11);
146
            for jj=1:length(frec)
```

```
147
                 docEp(jj,1)=jj; docEp(jj,2)=a0(jj); docEp(jj,3)=w(jj);
148
                 for kk=1:4
149
                     for 11=1:2
                        docEp(jj,4+(kk-1)*2+(ll-1))=err p(i cases,kk,jj,ll);
150
151
                     end
152
                 end
153
             end
154
155
             % Saving Pasternak Error data in .txt file
156
             eval(['cd ' method '/' VarRef]);
157
             fileEp=fopen(['AN' pcase '_ErrorP.txt'],'w');
158
             159
             nrows=size(docEp,1);
160
             for row=1:nrows
161
                 if row==nrows
162
                     163
                 end
164
                 fprintf(fileEp,formatEp,docEp(row,:));
165
             end
166
             fclose(fileEp);
167
             eval('cd ..'); eval('cd ..');
168
         end
169
170
         if W.Sp opt
171
             % Selecting output Optim Sp data to write
172
             docSp=zeros(length(frec),4);
173
             for jj=1:length(frec)
                 docSp(jj,1)=jj;
174
                                     docSp(jj,2)=a0(jj);
175
                                     docSp(jj,4)=Sp opt(i cases,jj);
                 docSp(jj,3)=w(jj);
176
             end
177
178
             % Saving Optim Sp data in .txt file
179
             eval(['cd ' method '/' VarRef]);
180
             fileSp=fopen(['AN' pcase ' Sp.txt'],'w');
181
             formatSp='%+.2i %+E %+E %+E \n';
182
             nrows=size(docSp,1);
183
             for row=1:nrows
                 if row==nrows; formatSp='%+.2i %+E %+E %+E'; end
184
185
                 fprintf(fileSp,formatSp,docSp(row,:));
186
             end
187
             fclose(fileSp);
188
             eval('cd ...'); eval('cd ...');
189
         end
190
191
     end
192
     9
                                                                            8
193
     8
                                                                            8
194
     end
```

195