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Foundations subject to strong static or dynamic loads and with high responsibility such
as those of bridges, off-shore structures, support-walls, nuclear power plants or high
buildings, are often solved using piles arranged in groups. Loads arising, for example,
from the action of the wind, running machinery or sea waves are usually applied to a rigid
cap connecting the top of the piles, so the action is distributed among them. Neverthe-
less, the different piles in a group will not generally support the same forces, unless the
distance between them is big enough, which is not common. This interaction between the
piles through the soil medium has been taken into account from early works. This way,
the pile group impedances are usually strongly dependent on frequency and its behaviour
varies with pile spacing, pile geometry, group size and soil and pile properties.

There are many publications related to this problem (see e.g. [1,2]). Two of the authors
of the present work have developed a boundary element model for the computation of
dynamic impedances of piles in elastic and poroelastic soils [3,4].

In this work a boundary element - finite element model is presented for the computation
of time harmonic dynamic stiffness coeficients of piles embedded in an elastic halfspace.
Piles are modelled using finite elements (FEM) as a beam according to the Bernoulli
hypothesis, while the soil is modelled using boundary elements (BEM) as a continuum,
semi-infinite, isotropic, homogeneous, linear, viscoelastic medium (the semi-infinite soil
and radiation damping is easily represenseted by the BEM).

The dynamic model presented is based on previous static model developed by Matos
Filho et al. [5], where it is assumed that the elastic soil is not disturbed by the piles and the
tractions in the pile-soil interface are considered as a load applied within the half-space
in the boundary integral representation of the soil.

In the present study, piles are modelled by the FEM as vertical beams according to the
Bernoulli hypothesis, and are discretized using three-nodes elements with 13 degrees of
freedom defined: two lateral displacements and a vertical displacement on each node, and
two rotations on each one of the extreme nodes. Lateral displacements along the element
are approximated by a set of fourth degree shape functions, while vertical displacements
and tractions along the pile-soil interface are approximated by one of second degree. The

373
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sub-matrix that transforms nodal force components to equivalent nodal forces, and the
stiffness and mass sub-matrices are defined.

The soil is modelled by the BEM as a linear homogeneous isotropic elastic un-bounded
region. Generally, body forces are considered to be zero in elastodynamic problems.
Nevertheless, in this case, the tractions within the soil along the pile-soil interface can
be treated as loads applied within the half-space, as it is assumed that the soil continuity
is not altered by the presence of the pile. The boundary element discretization of the
half-space is made using nine-node quadrilateral or six-node triangular elements. The
coupling BEM-FEM is imposed by compatibility and equilibrium conditions between
the variables of the two methods along the pile shaft.

The main advantage of this model is the capacity of computing accurately stiffness
coefficients with low computing times and low memory requirements in comparison to
other methods that need to discretize the pile surface or volume. This way, pile groups
with a big number of members can be analyzed without difficulty. Besides, once the
surface (not necessarily flat) has been discretized, it has not to be changed to analyze
different sets of piles, which can be modified easily. Other internal variables such as
stress values along the pile can be obtained, and soil strata and rigid rocky beds can be
easily taken into account. Furthermore, the model can be included into an existing BEM
code by adding subroutines to obtain the mono-dimensional or surface integrals along the
pile-soil interface, and modifying the system of equations in the way that is presented.

Several results are presented and compared to well known values taken from the litera-
ture, obtaining an excellent agreement.
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Abstract

This paper shows a BEM-FEM coupling model for the dynamic analysis of piles
and pile groups embedded in an elastic half-space. Piles are modelled using Finite
Elements (FEM) as a beam according to the Bernoulli hypothesis, while the soil is
modelled using Boundary Elements (BEM) as a continuum, semi-infinite, isotropic,
homogeneous, linear, viscoelastic medium. It is assumed that the soil is not disturbed
by the piles, and the tractions at the pile-soil interface are considered as a load ap-
plied within the half-space. Finally, in order to validate the model, selected numerical
results will be presented and compared with other reference values taken from the
literature.

Keywords: boundary element, finite element, BEM-FEM coupling, piles, pile groups,
pile-soil interaction, dynamic impedances.

1 Introduction

Foundations submitted to strong static or dynamic loads and high responsibility such
as those of bridges, off-shore structures, support-walls, nuclear power plants or high
buildings, are often solved using piles arranged in groups. Loads arising, for example,
from the action of the wind, running machinery or sea waves are usually applied on
a rigid cap connecting the top of the piles, so the action is distributed among them.
Nevertheless, the different piles in a group will not generally support the same forces,
unless the distance between them is big enough, which is not common. This interac-
tion between the piles through the soil medium has been taken into account from early
works.

This way, the pile group impedances are usually strongly dependent on frequency
and its behaviour varies with pile spacing, pile geometry, group size and soil and pile



properties.

This problem, involving dynamic load-displacement analysis of piles and pile groups
has received considerable attention during the last few decades. Quite a number of pa-
pers have appeared that address the problem using either computational [1-11], rigor-
ous [12—14] or simplified analytical [15-19] techniques. A good compilation of used
procedures are the ones presented by Novak [20] or Beskos [21].

An efficient and accurate approach to soil-structure interaction problems is the one
regarding BEM (Boundary Elements Method) - FEM (Finite Element Method) cou-
pling, taking advantage of the particular characteristics of each. During the last years,
great progress has been made on this topic [22-24], some of which dealing with pile-
soil interaction. For instance, Code and Venturini [25] present the coupling of framed
structures approached by FEM with three-dimensional bodies represented by BEM in
time domain, where piles would be approximated using a special cylindrical boundary
element.

However, a different BEM-FEM model for the computation of time harmonic dy-
namic stiffness coefficients of piles groups embedded in an elastic half-space is pre-
sented in this work, where piles are modelled using Finite Elements (FEM) as a beam
according to the Bernoulli hypothesis, while the soil is modelled using Boundary
Elements (BEM) as a continuum, semi-infinite, isotropic, homogeneous, linear, vis-
coelastic medium. The dynamic model presented is based on previous static model
developed by Matos Filho et al [26], where it is assumed that the elastic soil is not
disturbed by the piles and the tractions in the pile-soil interface are considered as a
load applied within the half-space in the boundary integral representation of the soil.

Although the presented results are restricted to a half-space, the technique is very
versatile and more complicated problems can be solved. Besides, as the pile boundary
does not need to be discretized, low computing times and memory requirements are
needed. Selected numerical results for vertical, horizontal and rocking impedances
are presented and compared to others taken from the literature.

2 Pile FE equations

The behaviour of a pile submitted to dynamic loads can be described by the following
differential equation

Mii+ Cua + Ku = f(¢) 1)

where M, C and K are the mass, damping and stiffness matrices of the pile, u is the
vector of nodal displacements, i and ii its first and second derivative referring to time,
and f(t) the vector of nodal forces over the pile.

It will be assumed now that the pile is subjected to a harmonically varying load. In
this case, the vectors of nodal displacements and forces can be expressed as



u=uwe ;. f=Fe“! (2)

where u” is the vector of nodal displacements and turns amplitudes, F is the vector
of nodal forces amplitudes and w the circular frequency of the excitement. Then, and
considering a pile with zero internal damping, equation (1) becomes

(K—w™M) & =F 3)

Piles are modelled by FEM as vertical beams according to the Bernoulli hypothesis,
and are discretized using the three-nodes element that is shown in Figure 1. There
are 13 degrees of freedom defined on it: two lateral displacements and a vertical
displacement on each node, and two rotations # on each one of the extreme nodes,
one about x; axis and another one about xs.

" u'm3

0 eml
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2 )—:)—’ Uy 2

m,

Ilk )

Figure 1: Element definition

The lateral displacements u#; and us; along the element are approximated by a set
of fourth degree shape functions, while vertical displacements u3 are approximated by
one of second degree. Thus

Uj = Pgy Ug; + kazeki + iy, + Omy U, + ¢M20mz‘ (4)

Uz = Qplky + QrUsy + G, (5)

where
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¢ =1-¢ (7)
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where £ is the elemental dimensionless coordinate varying from —1 to +1.

Using the principle of virtual displacements and the shape functions defined above,
the stiffness sub-matrix for the lateral behaviour of this element can be obtained as
(see reference [27])

k= / ol E1] dx (8)
L

and the one for the axial behaviour as

ki :/¢2EA¢; dz 9
L

where E is the Young’s Modulus for the pile, A and I are the area and the moment of
inertia of the section of the pile and L is the element length.

Finally, the matrices obtained are

f 316 94 512 196 347 /.
ki L2 L 12 L2 L ki
94 —128 34
M, o | E 36 -8 M g O,
o 512 —128 1024 —512 128 . ;
b =7l T T T T u, ;o= 1,2 (10)
f 196 34 512 316 —o4 u
m; L2 L L2 L2 L m;
—34 —128 —94
My, | =3 g s w36 |\ g,
and
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Similarly, the mass influence coefficients for an element, that represents the inertia
force opposing the acceleration experimented by a certain degree of freedom, can be
evaluated by a similar procedure as

iy — /L G da (12)

Using the same functions that were used for calculating the stiffness matrix, the
result obtained is the consistent-mass matrix. Thus, considering a beam with uni-
formly distributed mass m, the matrices obtained for the lateral and axial behaviours
are, respectively

- 138 L 4 =23 L A

63 63 63 630 180

L 1> 2L L I

63 630 315 180 1260

L 4 2L 128 4 -2L
M _Lm 63 315 315 63 315 (13)

—23 L 4 13 —L

630 180 63 63 63

L 1> 2L =L L%

- 180 1260 315 63 630 -

and

L=

8 1 (14)
1 2

The vector of nodal forces F can be decomposed as

F = F*' + F* (15)

where F** are the forces at the top of the pile and F*? is the vector of the equivalent
nodal forces from the pile-soil interaction, that can be calculated as

F*'=Q-¢ (16)

where Q is the matrix that transforms nodal force components to equivalent nodal
forces.

As shown in figure 2, the tractions ¢” along the pile-soil interface are approximated
by the set of shape functions defined by equation (7) as
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Figure 2: External forces and tractions along the pile-soil interface

Fy .

¢ = OrQr, + O1q; + Omlm, (17)

Again, using the principle of virtual displacements, the coefficients of matrix Q for
lateral forces can be obtained as

¢, = / pi6s; da (18)
L

and the ones for axial forces as

ij :/¢z’¢j dx (19)
L

This way, one can obtain the following matrices for lateral and axial equivalent nodal
forces respectively

eq r 23L 111 —L A
ki 140 105 28
eq L2 L2 L p
M, 84 105 210 Dk,
eq _ 4L 16L 4L p . -
li = | 105 35 105 a, ;o 1=1,2 (20)
eq L 1L 2L »
m; 28 105 140 G,
eq L2 -2 L2
My L 210 105 84 A

and
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Once all elemental matrices have been obtained, one can write for the whole pile

K’ =F* +Qq” (22)

where K = K — w?M. As each pile will be discretized using as many elements
as necessary to follow its deformed shape accurately, matrices K and Q are global
matrices, obtained as usual from the elemental ones.

3 Soil BE equations

The soil is modelled by BEM as a linear homogeneous isotropic elastic un-bounded
region. The boundary integral equation for a time-harmonic elastodynamic state de-
fined in the domain () with boundary I" can be written in a condensed and general
form as

ckuk—i—/p*udF—/u*de—i—/u*XdQ (23)
r r Q

where u and p are the displacements and tractions vectors

Ul tl
u= U9 P= t2 (24)
us tg

u* and p* are the elastodynamic fundamental solution tensors on the boundary I' due
to a unit load concentrated at point ‘k’

* * * * * *
Uy Upp Ugg 1y 113
* * * * ko * * *
U = | Uy Uy Uog PT=| ty tyn it (25)
* * * * * *
U3y Uzp Ussg U3 T35 133

c¥ is the local free term matrix at collocation point x;, with the form

ko { I, for internal points 26)

0.5 I, for boundary points where the boundary is smooth

I being the unit 3 x3 diagonal matrix, and X are the body forces in the domain {2

Generally, these body forces are considered to be zero in elastodynamic problems.
Nevertheless, in this case, the tractions q* within the soil along the ;" pile-soil in-
terface can be treated as loads applied within the half-space, as it is assumed that the



soil continuity is not altered by the presence of the pile. Then, equation (23) can be
written as

cut + / prudl = / wpdl+Y [ wqvdl, 27)

Ty,

where I, is the pile-soil interface of pile j and n,, is the total number of piles.

Equation (27) for a boundary point is calculated numerically. To do so, the bound-
ary surface is discretized into quadratic elements of triangular and quadrilateral shape
with six and nine nodes, respectively (see reference [28]) and using quadratic shape
functions. These functions are used to represent the boundary variables and the geom-
etry.

Once the boundary has been discretized and the unit load applied on all nodes in I',
equation (27) can be written in matrix form as

np

Hu® — Gssp + Z GSijSj (28)

Jj=1

where u® is the vector of nodal displacements on the surface, H** and G*° are ma-
trices obtained by integration over I of the 3-D elastodynamic fundamental solution
times the shape functions of the boundary elements, and G* is the matrix obtained
by integration over I';, of the 3-D elastodynamic fundamental solution times the in-
terpolation functions defined in (7), when the unit load is applied over I'. Assuming
free traction surface (p = 0), equation (28) becomes

H*u® — Z G*Pi qu -0 (29)

Jj=1

Furthermore, the unit load will be also applied on the pile nodes. The top node must
be treated as a surface node on a smooth boundary and the rest of them as internal
points. Then, applying equation (27) over a certain pile named i, one can write

HPu® — Z G""q” + Cu’ =0 (30)

Jj=1

where u}’ is the vector of nodal displacements at the node k of the pile i where the
unit load is applied, H”*® is the matrix obtained by integration over I" of the 3-D elas-
todynamic fundamental solution times the shape functions of the boundary elements,
and G”* is the matrix obtained by integration over I',, of the 3-D elastodynamic
fundamental solution times the interpolation functions defined in (7), when the unit
load is applied over a pile i. C is a diagonal matrix with a 1.0 on rows and columns
corresponding to internal points and a 0.5 on rows and columns corresponding to top
nodes.



The integrals over I' are solved numerically according to reference [29], while in-
tegrals over I, are calculated either as an integral extended over a cylinder which
radius is that of the pile, when the collocation point is within it, or as a monodimen-
sional integral extended to a load-line, when the collocation point is outside it. In such
a case, this line is defined by the pile axis.

4 BEM-FEM coupling equation

Now, a global system of equation must be built using the expressions defined above.
The links between piles and soil that will allow us to do the coupling are the tractions q
along the pile-soil interface and the displacements u” along the pile. Using equilibrium
and compatibility conditions along the interface, and assuming the tractions q° as
positive, equations (22), (29) and (30) can be rearranged as

Ax=B 3D

where B is the right-hand vector when all external conditions have been applied,

[ H* G G2 ... _GPw o o .. 0

HP'® _ QP —_GPhp2 L. —GPrp (Y %) . %)

Hp2s _G’p2’p1 _szpz . _Gmpnp @pl C/ . @

P2

A Hp.nps _Gll.inpm _Gz;nppz . _Gp.nppnp @ @ . C;;

%) Q™ %) ... %) K" _@ <o %)

%) %) Q2 o %) o K? ... %)

|0 %) %) QP o o ... K |
(32)
and

x={w,q", q%, .. ¢ @0, e} (33)

S Dynamic stiffness of piles and pile groups

The dynamic stiffness matrix K;; of a pile relates to the vector of forces (and moments)
applied at the pile top and the resulting vector of displacements (and rotations) at the
same point. For a group of piles, it is assumed that the pile heads are constrained by a
rigid pile-cap, and the foundation stiffness is the addition of the contributions of each
pile. Fig 3 illustrates the approached problem for a usual configuration, where L and
d are used to denote the length and diameter of the piles, and s refers to the distance
between adjacent piles.
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Figure 3: 2 x 2 pile group embedded in a half-space. Problem geometry definition.

The dynamic stiffness terms for a time harmonic excitation are functions of fre-
quency w and they are usually written as

Kij = kij + iaocij (34)

where k;; and ¢;; are the frequency dependent dynamic stiffness and damping coef-
ficients, respectively, c, is the soil shear-wave velocity and a, is the dimensionless
frequency

_ wd

(35)

Qo
Cs

6 Validation and numerical results

In order to validate the MEC-MEF coupling model, several results of impedances of
piles and groups of piles are contrasted with other reference values taken from the
literature.

Figure 4 shows a sketch of the discretizations used to obtain the stiffness of dif-
ferent pile groups embedded in a viscoelastic half-space, where boundary elements
for the soil and mono-dimensional finite elements for the piles were used. As the
developed software incorporates symmetry properties, only a quarter of the total ge-
ometry of the problem has to be discretized. Rectangular quadratic nine-nodes ele-
ments were used on the surface. The length of free surface needed (that has to be
discretized because there is not any global fundamental solution of easy implementa-
tion for time-harmonic elastic problems) is found through experiments, searching for
the convergence of the solution, and the element size is chosen in such a way that its
main dimension is always shorter than the half of the wave length. On the other hand,
the three-nodes elements defined above were used on the pile. To get an accurate so-
lution, each pile had to be discretized using only three elements for vertical problems,
fifteen elements for rocking problems, and five elements for horizontal problems.

10



Figure 4: A quarter of the free surface and pile discretization for a 3x3 pile group in a
half-space
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Figure 5: Horizontal impedances of a single pile. Comparison with Kaynia’s solution.

Lateral and vertical impedances (real and imaginary parts) of single piles embedded
in a homogeneous isotropic viscoelastic half-space, obtained by proposed technique
(noted by BEM-FEM in the figures), are shown in figures 5 and 6. The lateral and
rocking impedances of 2x2 and 3x3 pile groups are shown from figure 7 to figure 10,
and vertical impedances 4x4 pile groups are shown in figures 11, all for L /d = 2, 5, 10.
All these results are compared with those of Kaynia and Kausel [2], obtained from an
analysis of single piles and pile groups considering piles as linear elastic prismatic
members and soil as semi-infinite viscoelastic media by constructing the requisite
Green’s function using a discrete layer matrix approach.

The following properties are taken from Kaynia and Kausel [2]: piles (in the sequel
denoted by sub-index p) are assumed to be elastic Bernoulli beams; and surrounding
soil a uniform viscoelastic media with internal damping coefficient 5 = 0.05; the ratio
between the material modulae is £,/F = 103; ratio between densities p/pp = 0.7;
and Poisson’s ratios v = 0.4 (for the soil) and v, = 0.25 (for the pile, but not taken into
account in the proposed technique). The piles aspect ratio is L./d = 15. The vertical
and horizontal impedance functions for several spacing to diameter ratios L/d have

11
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Figure 6: Vertical impedances of a single pile. Comparison with Kaynia’s solution.
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Figure 7: Horizontal impedances of 2x2 pile groups. Comparison with Kaynia’s solu-
tion.

been normalized with respect to the respective single pile static stiffness (k) times
the number (V) of piles in the group. The rocking impedances have been normalized
with respect to the sum of the products of the respective single pile static stiffness
(k) times the square of the distance to the rotation axe (z;). Besides, all results are
plotted against the dimensionless frequency parameter defined by equation (35).

It can be seen that the computed values are in very good agreement with those
presented in [2].

7 Revision and conclusion

In this paper, a three-dimensional BEM-FEM coupling model for the computation of
time-harmonic dynamic stiffness coefficients of piles and pile groups embedded in a
homogeneous isotropic viscoelastic soils has been presented. Piles are modelled using
Finite Elements (FEM) as a beam according to the Bernoulli hypothesis, while the soil
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Figure 8: Rocking impedances of 2x2 pile groups. Comparison with Kaynia’s solu-
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Figure 9: Horizontal impedances of 3x3 pile groups. Comparison with Kaynia’s solu-
tion.

is modelled using Boundary Elements (BEM) as a continuum, semi-infinite, isotropic,
homogeneous, linear, viscoelastic medium.

The main advantage of this model is the capacity of computing accurately stiffness
coefficients with low computing times and low memory requirements in comparison
to other methods that need to discretize the pile surface or volume. This way, pile
groups with a big number of members can be analyzed without difficulty. Besides,
once the surface (not necessarily flat) has been discretized, it has not to be changed to
analyze different sets of piles, which can be modified easily. Other internal variables
such as stress values along the pile can be obtained, and soil strata and rigid rocky
beds can be easily taken into account. Furthermore, the model can be included into an
existing BEM code by adding subroutines to obtain the mono-dimensional or surface
integrals along the pile-soil interface, and modifying the system of equations in the
way that has been presented above.

Several results have been presented and compared to well known values taken from
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Figure 10: Rocking impedances of 3x3 pile groups. Comparison with Kaynia’s solu-
tion.
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Figure 11: Vertical impedances of 4x4 pile groups. Comparison with Kaynia’s solu-
tion.

the literature, obtaining an excellent agreement. More cases than these presented in
this work have been tested, all of them with the favorable conclusions.

Future developments that are being considered are the generalization of the model
to include: isotropic homogeneous fluid-filled poroelastic soils governed by Biot’s
theory, steady time-harmonic plane waves coming from the far field, flexible raft foun-
dations and super-structures coupling.
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