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Abstract. A boundary element - finite element coupling formulation is used to address the dynamic behavior of 
deep foundations with inclined piles, modeling the soil by boundary elements as a three-dimensional zoned-
homogeneous isotropic unbounded viscoelastic medium, and the piles by monodimensional finite elements as 
compressible Euler-Bernoulli beams. The problem is solved in the frequency domain. The formulation is briefly 
presented at the beginning of the paper. Then, validation results are presented for different foundation 
configurations and pile-soil stiffness ratios.  

Introduction 

This work addresses the dynamic response of inclined piles and pile groups with inclined members, which are 
widely used in Civil Engineering but whose response under dynamic events has not been sufficiently analyzed up 
to date. In fact, their use in seismically active regions is discouraged by several building codes, even though there 
are some published results [1-3] suggesting that inclined piles may have beneficial rather than detrimental effects 
on the seismic response of foundation and superstructure. 
A number of papers provide dynamic stiffness and damping functions of vertical piles but, up to the authors 
knowledge, impedance functions of inclined piles have been presented only by Giannakou et al. [4] and by 
Mamoon et al. [5], but for very few and specific cases. For this reason, and in order to contribute in this area, the 
methodology presented herein has been developed. 
 
Numerical Model 

The boundary element method is used herein to model the dynamic response of the soil region taking into account 
the internal loads arising from the pile-soil interaction. These loads are modeled as distributions of tractions 
applied on a line defined by the pile axis, and are named ’load-lines’. On the other hand, the piles rigidity is 
introduced later into the system by using finite elements. The whole approach, together with the definition of the 
geometrical parameters of the problem, is depicted in Fig. 1. 
Let the soil be considered as a linear, homogeneous, isotropic, viscoelastic, unbounded region Ω with boundary Γ. 
The boundary integral equation for a time-harmonic elastodynamic state defined in the domain Ω can be written 
in a condensed and general form as 

 
where ck is the local free term matrix at collocation point ‘k’, u and p represent the displacement and traction 
fields in the three directions of space, u* and p* are the elastodynamic fundamental solution tensors on the 
boundary Γ due to a time-harmonic concentrated load at point ‘k’, np is the number of piles, and Γpj represents the 
pile-soil interface along the load-line j . In eq (1), the two terms between brackets represent the contribution of the 
internal loads, being qsj and fsj vectors containing the tractions (acting within the soil) along the pile-soil interface. 
More precisely, fsj represents a point load placed at the tip of the pile, while qsj is the distribution of interaction 
loads, along the pile shaft, applied on a line defined by the pile axis, both forces fsj and qsj coming from the pile-
soil interaction along the different interfaces. On the other hand, Υj

k represents the corresponding u* tensor 
computed at the tip of the pile. However, a singularity arises when the collocation point ‘k’ coincides with the tip 
node of the pile. In such a case, this term can be computed by considering the force at the tip of the pile as a 
vector of uniformly distributed tractions over a circular surface with radius Rp

2 = A/π , which yields a regular 
integral [6,7], being A the area of the pile section. 
 



Figure 1. Pile foundation geometry and modeling through BEM-FEM coupling formulation 
 
Following the usual procedure in the boundary element method, the numerical solution of eq (1) requires the 
discretization of the boundary surface. In this case, quadratic elements of six and nine nodes have been used. 
Then, over each boundary element, displacement and traction fields are approximated in terms of their values at 
nodal points ( u  and p ) making use of a set of polynomial interpolation functions [8]. The treatment of 
singularities can be found in [6,7]. 
Now, eq (1) can be written for all boundary nodes in Γ and all internal nodes in Γpi , yielding, respectively, the 
following two matrix equations 

 
where H and G are coefficient matrices obtained by integration over the elements of the fundamental solution 
times the corresponding shape functions, u  and p are the vectors of nodal displacements and tractions of the 
boundary elements, and ūpi is the vector of nodal displacements along load-line i. On the other hand, piles are 
discretized using three-node beam elements with 13 degrees of freedom: three displacements on each node and 
two rotations at each of the ends. Linear axial deformation is allowed and pile flexural behavior is modeled 
according to the Euler-Bernoulli beam theory, but torsional response is not included in the model. After the 
discretization process, the dynamic behavior of pile j can be represented, in the finite-element sense, by a matrix 
equation 

 
where ω is the circular frequency of excitation, u is the vector of nodal translation and rotation amplitudes along 
the pile, fj

ext includes the external forces acting at the top and the tip of the pile, Kj and Mj are the stiffness and 
mass matrices of the pile, and Qj is the matrix that transforms these nodal traction components to equivalent nodal 
forces. As usual, matrices Kj, Mj and Qj are expressed herein as global matrices, obtained following the general 
assembly process of the finite element method from the elemental matrices defined for a general vertical element 
[6,7] and after pre and post multiplying by the corresponding rotation matrices in order to adapt to the pile 
inclination. 
Now, imposing equilibrium and compatibility conditions along the load lines, and prescribing boundary 
conditions, eqs (2), (3) and (4) can be rearranged in a system of equations of the type 

 



Figure 2. Multi-region boundary-element model definitions and BEM mesh details. 
 
 
Comparison Results 

The formulation presented above was implemented in a previously existent multi-region BEM FORTRAN code 
[9, 10]. The aim of this section is the validation of this formulation (and its implementation) through a set of 
comparison results corresponding to dynamic stiffness and damping functions for 2×2 pile groups. To this end, 
the computation of the dynamic stiffness and damping functions of pile groups is going to be validated against 
results from an advanced 3-D multi-region boundary element code for time-harmonic elastodynamic problems as  
presented in [9,10].  

3-D boundary element formulation. In this multi-region boundary element formulation, both soil and piles are 
modeled as continuum isotropic homogeneous linear viscoelastic regions with their actual geometries. The 
boundary integral representation of the displacements in each domain (soil and each pile) corresponds to eq (1) 
but leaving the right hand side only with the first term. For the specific case of a single floating pile embedded in a 
viscoelastic half-space, the boundary element equations for each region (pile and soil) in partitioned form are: 

 
corresponding eqs (8) and (9) to pile and soil regions, respectively. According to Fig. 2, sub-indexes 1 to 3 of the 
above equations correspond, respectively, to the pile connection with the rigid cap where nodal displacements are 
known (Γ1), to the pile-soil interface (Γ2), and to the soil free-traction ground surface (Γ3). Imposing, on the above 
expressions, external boundary conditions together with compatibility and equilibrium along the pile-soil 
interfaces, the combined equations for the coupled impedance problem can be written as 

 
All boundaries (pile-soil interfaces, pile-cap interfaces and ground surface) are discretized into a finite number of 
quadratic nine-node and six-node boundary elements. Details of one of the used meshes in this work are shown in 
Fig. 2. Note that, due to the problem symmetries, only one quarter of the geometry needs to be discretized. This 
multi-region BEM code, being more rigorous and versatile than the simplified BEM-FEM coupling scheme 
presented before, presents clear disadvantages when it comes to performing parametric studies. Such 
disadvantages are all related to the relatively high number of degrees of freedom involved in a boundary-element 



model and also to the amount of work needed to produce the mesh corresponding to each one of the 
configurations to analyze. Both negative aspects are clearly improved by the coupling formulation, where the 
number of degrees of freedom is radically reduced, and the pile discretization, much more simple to define, is 
independent of the soil mesh. 

Table 1. Configurations used for validation of dynamic stiffness and damping functions. 
 
 
Validation results. In this section, comparison results are shown for several configurations of 2×2 inclined pile 
groups. Three different rake angles have been considered for these plots: θ = 10°, 20° and 30°. The first case 
corresponds always to a pile separation ratio of s/d = 5, while the other two correspond to s/d = 10. Also, for θ = 
10° and 30°, piles are always inclined parallel or perpendicular to the direction of excitation. On the other hand, 
the configuration used for θ = 20° corresponds to a case in which the piles are inclined, symmetrically, along the 
cap diagonals (see Table 1). Results are shown for the two different pile-soil stiffness ratios considered in this 
paper. Figs. 3 to 6 present horizontal, vertical, rocking and horizontal-rocking crossed dynamic stiffness and 
damping functions for the configurations described above. Results corresponding to the boundary element – finite 
element coupling formulation presented in this work are labeled as “BEM-FEM” and plotted using points, while 
those obtained from the multi-region boundary element code are labeled as “BEM-BEM” and plotted using solid 
lines. In the horizontal and rocking cases, results are provided for excitation modes along both horizontal axes. It 
can be seen that a very good agreement exists between the BEM-FEM coupling scheme used in the following 
section and the more rigorous boundary element code. 
 

Figure 3. Comparison between horizontal impedances obtained by BEM-BEM and BEM-FEM models. 



Figure 4. Comparison between vertical impedances obtained by BEM-BEM and BEM-FEM models. 

 

 

 

 

Figure 5. Comparison between rocking impedances obtained by BEM-BEM and BEM-FEM models. 

 



Figure 6. Comparison between horizontal-rocking crossed impedances obtained by BEM-BEM and BEM-FEM models. 
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