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Abstract. This paper presents a two-dimensional BEM-FEM rhadehin structures for time harmonic
analysis when they are surrounded by inviscid fluidcoelastic and/or poroelastic media. The thin
structures are considered as beams under the Betaoulli hypotheses, which are discretized byREM.

The surrounding media are discretized by the BEMene thin structures are seen as null thickness
inclusions. The usage of the conventional SBIEnidl thickness inclusions leads to a singular systd
equations. To overcome this difficulty, the SBIEAEBdual formulation is used since it is the mosedi
approach. The HBIE and the SBIE/HBIE dual formwatfor inviscid fluids and viscoelastic solids are
well known, but not in the case of poroelastic dmliFor this type of medium, a regularized formthad
HBIE has been derived, which together with the SBEE dual formulation are briefly presented. Also,
appropriate equilibrium and compatibility conditsothat couple the BEM equations (surrounding media)
and the FEM equations (thin structures) are shdwis BEM-FEM model is validated against BEM-BEM
models by studying a water reservoir where bottedinsents support a wall.

I ntroduction

This work presents a two-dimensional BEM-FEM dymamiodel of thin structures surrounded by inviscid
fluid, viscoelastic and/or poroelastic media. Tiructures buried or immersed in these types ofianegh

be found in many applications: noise barriers, &lsnretaining walls, sheet piles, slurry walls;. eThe
dynamic analysis of such structures can be perforasing pure BEM or FEM models. However, these
pure models face many difficulties. The BEM demaadmesh carefully executed, where the size of
elements greatly depends on the thickness of thetste and the quasi-singular integration capédmsliof

the implementation. The FEM requires an importattme mesh for the surrounding media, and besides,
it is unable to naturally incorporate the Sommelfieldiation condition. This BEM-FEM model properly
combines both methods and reduces these diffisultibas been presented already for inviscid $l{iid.

The key of this approach is assuming that the $hinctures are seen by the surrounding media &s nul
thickness inclusions, being the surrounded medtated by the BEM and the thin structures by the
structural FEM. 1t is well known that null thickrees$nclusions leads to a BEM degenerate system of
equations if only SBIE (Singular Boundary IntegEajuations) are used [2]. This can be avoided by the
multiregion approach [3], which requires fictitio®undaries that increase the number of degrees of
freedom. The most direct approach is the SBIE/H@¥persingular BIE) dual boundary formulation [4],
whose difficulty lies on expressing the HBIE in @raluable form. The HBIE can be treated by manyswvay
[5], of which the reduction of the HBIE to a setrefjular or weakly singular integrals is used is thork.

The particular HBIE formulation has been alreadyetieped for elastostatics [6] and elastodynamigs [7
and for inviscid fluids [1]. In this work, we brigfpresent the HBIE and the SBIE/HBIE dual formidat

for the Biot's poroelastic media. The thin struetuare considered as beams under the Euler-Barnoull
hypotheses with added rotational inertia. The FEMrives have already been presented [8,1].

SBIE and HBIE for porodastic media

The poroelastic media is assumed to be a fluidefiboroelastic material governed by Biot's equatidine
following formulation uses the notation and proagedupresented in [9], but for the two-dimensional
problem.



Let Q be a poroelastic region, aidits boundary [ =9Q ) with an orientation defined by its outward
unit normaln . The SBIE for a collocation point JQ can be written as:
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The fluid equivalent stress and the displacementg of the solid skeleton are gathered in the veatarf
primary variables, while the fluid normal displacamhU and the tractions, of the solid skeleton are

gathered in the vectar of secondary variables. The fundamental solutimasrices can be divided into
four submatricesd0, 0k, 10, andlk; where the first index indicate where the loadpglied, and the second
index indicate where the response is being obsef@efiuid phase,l,k =1,2: solid skeleton). Ifx, OT",

then the integration domain is partitionedfaslim_ .[(T —€) +I'], being€ the exclusion zone of ,

andl" an arc of radiug that surrounds, . Once the integration ovér is done, the SBIE (1) turns into:
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where the free-terms), and ¢, are similar to those of the potential and the teftatic problems,
respectively. The components of thleé fundamental solution matrix can be written as:
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where K (2) is the modified Bessel function of the second kiodder n, and argumentz. The
components of thd" fundamental solution matrix are obtained from:
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Since 7, and u, are written in a similar fashion to the scalar egwopagation and elastodynamic
problems, respectively, it is easy to identify B@andlk submatrices olU”™ and T~ with those of these
problems. All integrals are regular or weakly silaguexcept those associated wifh, which are strongly

singular and must be regularized by interpretirgthin the Cauchy Principal Value sense. Their soius
well known, see for example [6].

The HBIE of the poroelastic problem is obtaineddifferentiating the SBIE (1) with respect to the
coordinates of the collocation poiaind then applying:
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wheren' = (nln'z) is the unit normal at the collocation point. Theére HBIE can be written as:
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If x,00, then the integration domain is partitioned in amier way as the SBIE, i.e.
r=lim_ [T -€) +I'"] . However, some of the integrals associated wighntlatrix S are hypersingular
integrals, which need certain continuity conditionsn order to be solved. Let

I =JfF(x) I(x=x)?dx, A<x<B be a hypersingular integral, F belongs to the Hélder function space

C' , the | exists in the Hadamard Finite Part sense. In otadulfill this condition, it is necessary to
impose thalT(xi)DC1 andu, (x‘)DCl. Once the integration ovér is done, the HBIE (13) turns into:
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where it has been assumed thgix')JC", i.e. the boundary is smooth at the collocatiomiorhe

integration over”™' has produced an unbounded term. However, it isedl@al by another unbounded term
that emerges when the regularization process fompezd to the integrals ovdi —€ associated witls

resulting the Hadamard Finite Part of the origimaégral. Since th€0 andlk submatrices fron§ have
the same kind of singularity of the fundamentauiBohs of the scalar wave propagation and elastmayn
problems, respectively, their regularization pracasssimilar to those of these problems. The reqaton
process for the scalar wave propagation problembeaiound in [1], and for the elastodynamic probiem

[6,7]. TheOk andlO submatrices o6 contain strongly singular integrals similar toskdhat appear in the
off-diagonal terms of th&" matrix of the elastodynamic problem. TBé fundamental solution matrix is
similar to theT" matrix, except for some signs and thatappears instead of .



SBIE/HBIE dual boundary formulation for poroelastic media

The SBIE/HBIE dual boundary formulation consiststhe simultaneous collocation of the SBIE and the
HBIE on the boundaries of null thickness inclusiares cracks, voids, or in our case, thin elalstdies. It

is the most direct and general approach to facblgmts with null thickness inclusions. Other teclueis|
could be found in the introduction section of [4].

Let I' be the boundary of a regidd, resulting from the approaching of two identicauibdaries,*
and ', whose normal vectors are pointing at each otinati| they are coincident. The fade™ is the
reference face, thus and n' are defined on it. The variables of each faceimdeated byo™ or o
When the collocation point, I, the integration domain for both the SBIE andHE is (see Fig. 1):
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Figure 1: Integration domain for the dual boundary formulati

If it is assumed thal (x') JC*, then the regularized SBIE/HBIE dual boundary folation for poroelastic
media can be written as:
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where RPV (Riemann Principal Value), CPV (Cauchiynélpal Value) and HFP (Hadamard Finite Part)
before the integral operator sign is used to intditiaat only the finite part of those integrals epasidered.
The integration and regularization process of thotgrals is similar to the previously explained.

BEM-FEM coupling

The BEM dual boundary formulation together with BMF model for the thin structures and appropriate
coupling conditions make possible to build a BEMMFEhodel for thin structures immersed or buried in
inviscid fluid, viscoelastic and/or poroelastic meedrhe FEM model of the thin structures is notlaxpged

in this paper, but it could be found in [8,1]. mg paper, the coupling conditions when the surdngs is a
poroelastic region are presented. The coupling itiond for inviscid fluids [1] and viscoelastic sid can

be obtained as particular cases of the poroeleasie.

Let Y; be a BEM-FEM poroelastic soil — structure elemamnposed by three sub-elemenys: and

Y; (boundary elements), and; (finite element); see Fig. 2. The boundary elesmané 3-noded quadratic

line elements, where each node is associated withviariables: fluid phase normal displacement fluid
phase equivalent stregs solid skeleton displacement vector and solid skeleton traction vector The



finite element is a 3-noded straight beam elemandl has eight degrees of freedom. The vertex nodes
i =1,2 have translatioru” and rotationd", while the central node only has translatio®. The local

axes are defined by the pair of vectars and x',. Each node is associated with axifP and laterals'
forces due to axial and lateral load distributicespectively.
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Figure 2: Coupling between sub-elements, Y, and Y] (local numbering)

The compatibility equations for a nodeare:
Ui =u™ m, Ul =-ui) m a7)
Ui =y Y9 =y (18)

where (17) establishes that both faces of thetstrei@re impervious, and (18) establishes a pebfautling
between the soil and the structure. The equilibraguation for a node is:

N+t —rOn+t +5x +59 %', =0 (19)

which is in reality two equations, one for eachrclimate.

By examining Fig. 2, each vertex node has 17 unksow total, while the central node has 16
unknowns. The number of equations are: 3 (SBIEKBIE), 3 for vertex nodes or 2 for the central eaod
(FEM), 2 (impervious condition), 4 (perfect bondingnd 2 (equilibrium); in total 17 equations fariex
nodes, and 16 for the central node.

Validation of the BEM-FEM model

A modified problem from [9] is used to validate thredel. The problem is a simplified water reservoir
where bottom sediments support a wall (see Figl't®.upper part of the wall is immersed in the wated
its base is buried in the bottom sediments. Therves has free tractions on the left and top beuisd,
and horizontal displacements on the right and bot@undaries. Four regions are present: dam @all

(viscoelastic solid), bottom sedimentQ, (poroelastic solid), waterQ, (inviscid fluid), and the
immersed/buried wal, (viscoelastic solid). The viscoelastic regiofss and Q, have the following
properties: densityp =2481.5kg/m, shear modulusy=11500 MP¢, Poisson’s ratiov =0.20 and
damping coefficientf =0.05. The poroelastic regioQ, has the following properties: fluid phase density
0; =1000 kg/mi, solid skeleton densityp, =2640kg/ni, Lamé’s first constantd =17.9753 MPx,

M1 =7.7037 MP¢, damping coefficienté =0.05, porosity ¢=0.60, null added density, Biot's constants



R=1.24416718 N/m and Q=829.44110 N/m, and dissipation constari=3.5316116 Ns/rfi. The
fluid region Q, has a density =1000 kg/nt and a wave propagation speed 1438 m/s.

t=0 p = 0 (free surface)
Uu,=1
93 50 m l—l
0 o, M (1) = 6 -
t= Q
' B ex. mesh for BEM-BEM model
DI ¢¢ DD 30m
u=(1,0) [10m
U,=1 10m
u=(1,0) u= (170); Un=0 Q, Q4: viscoelastic :
ui(t) =€ Q,: poroelastic
20m 50m 50m Q3: inviscid fluid ex. mesh for BEM-FEM model

Figure 3: Water reservoir with bottom sediments supportingai

Three cases with three different widths of the insad/buried wall are considererdz{l, 2,5} m, or in

terms of the sIenderneSs/w={40,20,E}. These cases are solved using the complete gegonmtig a

BEM-BEM model, and using the developed BEM-FEM midde the immersed/buried wall. Note that the
BEM-BEM model needs a different mesh for each catde the BEM-FEM model only needs one mesh.
The points B, C, DI, DD, El and ED are selectechfmwhere several results are going to be plottethe
plots, the normalized frequenay/ «j is used, wherey =6.769 rad/: is the first natural frequency of the
dam wall on rigid foundation.

Fig. 4 and Fig. 5 show the, amplification factorabs[{, — 1)/1 at the point B and C, respectively.

They show that the BEM-FEM model gets close toBiEM-BEM model as the slenderness of the wall
increase. Even so, when the wall has slenderhéss=8 m, which is in the limit to consider it as a thin

structure, the BEM-FEM model obtains a good repotidu of the response. Fig. 6 shows the pressure at
the water at points DI and DD. Fig. 7 shows théflequivalent pressure at the bottom sedimentgiatg

El and ED. Again, they show that the BEM-FEM model close to the BEM-BEM model as wall
thickness decrease.

Conclusions

A two-dimensional BEM-FEM model of thin structurdsr time harmonic analysis when they are
surrounded by inviscid fluid, viscoelastic and/@rgelastic media has been presented. The key of the
model is using the BEM dual boundary formulationtfte surroundings, and a beam finite elementHer t
thin structures. The model has been validated gir@simple water reservoir problem, showing excel|
agreement.
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