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Abstract. Multiobjective shape design of acoustic attenuation barriers is 

handled using a boundary element method modeling and evolutionary 

algorithms. Noise barriers are widely used for environmental protection near 

population nucleus in order to reduce the noise impact. The minimization of the 

acoustic pressure and the minimization of the cost of the barrier -considering its 

total length- are taken into account. First, a single receiver point is considered; 

then the case of multiple receiver locations is introduced, searching for a single 

robust shape design where the acoustic attenuation is minimized simultaneously 

in different locations using probabilistic dominance relation. The case of Y-

shaped barriers with upper absorbing surface is presented here. Results include 

a comparative between the strategy of introducing a single objective optimum 

in the initial multiobjective population (seeded approach) and the standard 

approach. The methodology is capable to provide improved robust noise barrier 

designs successfully.  
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1   Introduction 

Shape optimization has been performed in recent years applied to various fields of 

computational mechanics, such as aeronautics or solid mechanics using evolutionary 

algorithms [4,5]. Automatically generated optimum designs are possible by using 

coupled evolutionary computation with accurate numerical modeling.  

Noise barriers are widely used for environmental protection in the boundaries of 

high traffic roads, airports, etc, in the vicinity of population nucleus in order to reduce 

the noise impact. Here we perform shape optimum design of Y-shape noise barriers 

using the Boundary Element Method (BEM) [9] to model the sound propagation and 

NSGA-II [7] for optimization. The aim is to improve the design shape of noise 

barriers achieving simultaneously higher noise attenuation and also minimizing the 

cost. The barrier length is considered as representative of the raw material cost and its 

minimization also leads to limiting its environmental impact.  

The paper describes in the second section the acoustic attenuation modeling using 

BEM, following with the Y-shaped noise barrier optimum design methodology and  



problem description, test case, results and discussion. Finally it ends with the 

conclusions and references. 

2 Noise Barriers Acoustic Attenuation Modelling 

Sound propagation calculation can be performed efficiently and successfully with the 

Boundary Element Method (BEM). The main advantages of BEM [9] over other 

methods based on a geometrical theory of diffraction approach are its flexibility 

(arbitrary shapes and surface acoustic properties can be accurately represented) and 

accuracy (a correct solution of the governing equations of acoustics to any required 

accuracy can be produced providing a boundary element size with small enough 

fraction of a wavelength). Nowadays, both BEM and the Finite Element Method are 

the most extended state of the art discretization methods in the computational 

acoustics field [26]. Concretely, to estimate the efficiency of noise barriers with 

complex shapes, the BEM has been used from the 80s [6,17,23] and it is still a field of 

research interest. In recent years, design of noise barriers has been taken into account 

using BEM, see e.g. [24].  

The integral equation for a boundary point i, to be solved numerically by BEM, can 

be written as: 
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where: 

p: acoustic pressure field on the barrier surface (Γb) of generic admittance βb.  

p
*: half-space fundamental solution. Acoustic pressure field due to a source at 

collocation point i over a plane with admittance βg (ground surface). This 

fundamental solution only requires the discretization of the barrier boundary (Γb). For 

perfectly reflecting surfaces (barrier or ground), β =0. If the surface is absorbent, the 

evaluation of β is obtained from the complex admittance of Delany and Bazley [8] 

knowing the covering material thickness and its air flow resistivity.  

ci: the local free term at collocation point i: ci = θ / 2π , where θ is the angle 

subtended by the tangents to the boundary at this point (rads). ci =0.5 for smooth 

boundaries. 

po
*: half-space fundamental solution at problem source due to collocation at point i. 

k = ω/c is the wave number (c: sound wave velocity, ω: angular frequency) and i the 

imaginary unit.  

The numerical solution of Eq. 1 is possible after a discretization process. A linear 

system of equations is obtained from this process and lead to values of acoustic 

pressure over the barrier boundary. The BEM code in this paper uses quadratic 

elements with three nodal points. For more details about the used model, see [21][22]. 



3 Y-Noise Barriers Shape Design Optimization 

In recent years, noise barrier optimum design has been solved using evolutionary 

computation. Some works related with single objective optimization are [1,3,10,14]. 

The simultaneous minimization of two conflicting objectives corresponding to a 

noise barrier design is performed in this paper. First, a fitness function related with 

the increase of the acoustic attenuation of the barrier. Concretely, the first fitness 

function which has to be minimized is:  
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where: 

ILi : insertion loss in the third octave band centre frequency for the Y-barrier profile 

evaluated. Being the insertion loss (IL), defined as stated in Equation 3 (being dBA 

the units of IL): 
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and calculated at one-third octave band spectra, where PB and PS are the acoustic 

pressure at the receiver with and without the presence of the barrier respectively. This 

parameter is an accepted estimation of the acoustic efficiency of the analyzed profile. 

ILi
R: insertion loss reference curve in the third octave band centre frequency. When 

choosing a reference with high IL values, a high efficient attenuation barrier fitting is 

searched.   

The optimum monocriteria design using this first fitness function was previously 

described in Greiner et al. [14]. It solves an inverse problem, where the objective IL 

curve at certain frequencies is known (ILR) and it allows to search for the 

corresponding barrier design whose IL curve fits ILR. In [14] was shown the 

capability to increase a certain percentage the acoustic efficiency of a certain Y-shape 

barrier taken as original design.    

The second fitness function (F2) to be minimized is the noise barrier length, 

representative of the raw material cost. The higher its value, the easier the noise 

attenuation capacity of the barrier, and therefore, the easier to fit the searched 

reference curve. On the contrary, the lower its value, the lower the cost and better 

environmental impact produced by the barrier.  

Here, a multiobjective optimization noise barrier design with evolutionary 

algorithms is introduced. Concretely, the procedure searches for the barrier shape 

design which most fits ILR for each barrier length value. 

The modelling approach included in the paper follows the test case implementation 

of the previous related referenced works and is intentionally chosen because of the 

simultaneous capability to cover the design space and also to reduce the number of 

variables of the search optimization (could be interpreted as helping the search 

including engineering knowledge). The Y-barrier shape is modeled using the two 

extreme points of the arms and their join point. The x coordinate of the extreme points 

is supposed fixed in the extremes of the barrier, where only y-coordinate varies. The 



join point has variable x- and y-coordinates. The evolutionary algorithm variables are 

set in a transformed space with perpendicular axis and square shape in contrast to the 

geometric trapezoidal shape limited by b and the sloped line (see Fig. 1). So, four 

design variables are required to define each shape (the x coordinate vary from -0.5 to 

+0.5 and the three y coordinates vary from 0 to 1 in the transformed space). For more 

details, see [14].  

With this geometry and for a given source position, the boundary element program 

calculates the acoustic pressure at the receiver position (r). A maximum element 

length not bigger than λ / 4 (being λ the wavelength) is necessary to obtain an 

appropriate accurate solution. With the acoustic pressure, the IL corresponding to 

each frequency is obtained. 

In case we want to consider not a single receiver location, but a certain zone where 

to minimize the acoustical impact, then various receiver locations are needed and a 

robust design is pretended, considering the minimization of function F1 at each 

receiver. Therefore we deal not with a single value, but with a set of F1 values (a 

distribution estimation). Uncertainty handling in evolutionary optimization has been 

covered in recent years as a growing field of interest, see e.g. [2, 11, 19]. We follow 

here the proposal of Teich [25], including the probabilistic dominance relation in the 

NSGA-II as shown in [20]. So, the F1 objective is not a number, but a random 

variable with values bounded by an interval evaluated as the average of the F1 values 

at the receiver points plus and minus their typical deviation.   

4 Test Case 

 
Fig. 1. Problem topology representation. 

 

The parameters considered in the test case used in the following experiments are 

according to Fig. 1: b=1m. and d=10m. (noise source distance to the barrier base) We 

will compare the single-point and multi-point receiver cases. In case of a single 

receiver, r= 50m. In case of multiple receivers, three receiver positions are taken into 

account (r=25, 50 and 100m., respectively). The ILref curve is obtained from a 

straight barrier of 4.5 m height with reflecting surfaces, versus the maximum effective 

height allowed of our Y-shaped designs of 3.0 m. We will consider only reflecting 

surfaces, with the exception of the upper boundary of the design (inner surfaces of the 



arms), which are absorbing surfaces. A thickness of 10 cm and an air flow resistivity 

of 20000 are considered for the calculations described in section 2. A total of 13 

frequencies at one-third octave centre band spectra frequency are evaluated: 100, 125, 

160, 200, 250, 315, 400, 500, 630, 800, 1000, 1250 and 1600 Hz. The CPU time cost 

of one F1 fitness function evaluation is 12 seconds in one Pentium IV-3GHz 

processor. 

5 Results and Discussion 

Twelve independent runs of the evolutionary optimization design were executed in 

each case. A population size of 100 individuals and 3% mutation rate were used in a 

Gray coded [27] NSGA-II algorithm with uniform crossover and probabilistic 

dominance relation (α=0.5).  

Two cases are analyzed: 1. The single point receiver case. 2. The multi-point 

receiver case. Each one has been solved comparing two different initial population 

strategies: a) A seeded approach, where a solution of high quality is inserted into the 

initial population; e.g., see [15]. b) The standard no-seeded initial random population 

approach.  

5.1 About the initial Population Strategy 

The inserted high-quality design is obtained performing a single-objective steady-

state evolutionary algorithm optimization on F1. Each of the twelve independent runs 

obtained the same final value, which will be considered as the optimum in terms of 

F1. The number of evaluations required to reach the optimum for each run is shown in 

Table 1. The average values in obtaining the optimum for the single-point and multi-

point receiver cases are 4346 and 4526 function evaluations. Since the average values 

computed are principally influenced by the greatest values of Table 1, if we delete the 

best and worst values, avoiding the excessive influence of extremes, then the average 

values are 4005 and 3053, respectively; showing in average that the multi-point 

receiver case needs less function evaluations.   

Table 1. Number of evaluations required to reach the optimum value in the single objective 

optimization (F1) and average (in italic type) 

3786  6050  3806  4164  2020  3212  Average Single-Point  

Receiver  4706 2904  10080 4240  3758  3428 4346 

2826  4606  3044  21844  2970  2344  Average Multi-Point 

Receiver  2044 3790  2392  1934 3760  2758  4526  

 
In contrast, the best values in terms of F1 obtained after 45000 fitness function 

evaluations with the multiobjective no-seeded search are shown in Table 3: Only one 

out of 24 runs were capable to achieve this F1 best solution design. 

To compare the outcome of the whole front, we will evaluate the S-metric 

(hypervolume, originally proposed by Zitzler [28]) of various attainment surfaces. 



Concretely, we use the S-metric proposal of Fonseca et al. [12]1. The attainment 

surface concept in multiobjective optimization was introduced in [13,16] and we use 

here the approach suggested in Knowles [18]2.  

Table 2. S-Metric (Hypervolume) Results, with Reference Point (2000, 9), including the 

attainment surfaces 1, 3, 5 and 7 over 12. The constrained space results consider only solutions 

with F2 values greater than 3.6 m. 

 S Metric 
(Unconstrained Space) 

S Metric 
(Constrained Space) 

Single Point 

Receiver 

Multi Point 

Receiver 

Single Point 

Receiver 

 

Multi Point 

Receiver 

 

Initial Population 

Strategy – 

Number of 

Evaluations Attainment 

Surface 1 

Attainment 

Surface 1 

Attainment 

Surface 1 

Attainment 

Surface 1 

Noseed - 15000 14420.7833 14412.6969 10790.7287 10789.0082 

Noseed - 30000 14425.8523 14421.1657 10790.9215 10789.1444 

Noseed - 45000 14428.0118 14423.7072 10790.3783 10790.4215 

Seed - 10000 14407.9250 14406.2951 10791.8617 10788.3595 

Seed - 25000 14417.2164 14420.7298 10792.5499 10788.7074 

Seed - 40000 14420.7381 14423.1665 10792.6384 10788.7788 
 Attainment 

Surface 3 

Attainment 

Surface 3 

Attainment 

Surface 3 

Attainment 

Surface 3 

Noseed - 15000 14394.8957 14392.7734 10790.3061 10788.6518 

Noseed - 30000 14402.1018 14397.0153 10790.6493 10788.9019 

Noseed - 45000 14407.4146 14400.8746 10790.2065 10790.2490 

Seed - 10000 14390.6412 14385.8869 10791.4474 10788.0735 

Seed - 25000 14398.1735 14396.3221 10792.2399 10788.4565 

Seed - 40000 14400.7514 14401.7005 10792.4660 10788.6195 
 Attainment 

Surface 5 

Attainment 

Surface 5 

Attainment 

Surface 5 

Attainment 

Surface 5 

Noseed - 15000 14382.4308 14381.0581 10789.5308 10788.2375 

Noseed - 30000 14387.7540 14385.4327 10790.4415 10788.7214 

Noseed - 45000 14391.4587 14387.9532 10790.0582 10790.0954 

Seed - 10000 14379.4652 14373.8816 10790.7003 10787.8379 

Seed - 25000 14386.4227 14382.8896 10792.0495 10788.2732 

Seed - 40000 14388.7318 14386.0760 10792.2480 10788.4440 
 Attainment 

Surface 7 

Attainment 

Surface 7 

Attainment 

Surface 7 

Attainment 

Surface 7 

Noseed - 15000 14371.1840 14370.0224 10788.7894 10787.9192 

Noseed - 30000 14376.9554 14375.0176 10790.2124 10788.5177 

Noseed - 45000 14379.5126 14376.3961 10789.8960 10789.8911 

Seed - 10000 14368.6691 14362.9460 10790.4835 10787.4946 

Seed - 25000 14374.9322 14372.3565 10791.9008 10788.0779 

Seed - 40000 14378.1628 14374.9925 10792.0855 10788.2863 

 

                                                           
1 Source code available at: http://sbe.napier.ac.uk/~manuel/hypervolume 

 
2 Source code available at: http://dbkgroup.org/knowles/plot_attainments 



We will consider four attainment surfaces, 1 (100%), 3 (83%), 5 (67%) and 7  

(50%) out of 12 (total number of independent runs per case), and evaluate its 

hypervolume after 15000, 30000 and 45000 fitness evaluations in case of no-seeded 

strategy and 10000, 25000 and 40000 fitness evaluations in case of seeded strategy (a 

fair comparison to take into account the cost of the included solution). As reference 

point in S-metric calculation, a point sufficiently high has been selected, whose 

coordinate values of F1 and F2 are respectively, 2000 and 9. In the multi-point 

receiver case, the average of F1 has been considered for hypervolume calculation. 

Results are shown in table 2. In this problem the decision maker region of interest is 

located in the left part of the search space (low F1 values and high barrier length, 

being the higher F1 values not useful). So, we have also evaluated the S-metric in a 

constrained design space over a barrier length greater than 3.6 meters. The important 

information of Table 2 has been put in bold style. 

Table 3. Values of the best F1 solutions achieved each run in the standard no-seeded 

population strategy 

  Single Point Receiver Multi Point Receiver 

  Best F1  

value 

Corresponding  

F2 value 

Best F1  

value 

Corresponding  

F2 value 

Run Number 1 0.793816 5.11963 1.01041 5.16681 

Run Number 2 0.789535 5.12731 0.99224 5.14777 

Run Number 3 0.792179 5.13680 0.993157 5.15853 

Run Number 4 0.792731 5.13644 0.99390 5.15735 

Run Number 5 0.815023 5.16626 0.991989 5.14819 

Run Number 6 0.830437 5.13460 1.00177 5.15647 

Run Number 7 0.963581 5.18668 1.00676 5.17805 

Run Number 8 0.796091 5.15574 1.00847 5.17743 

Run Number 9 0.787557 5.11747 1.01499 5.15646 

Run Number 10 0.796999 5.16681 0.994803 5.13744 

Run Number 11 0.792993 5.09903 0.994803 5.13744 

Run Number 12 0.794859 5.14713 1.00739 5.11768 

Best Value 0.787557 5.11747 0.991989 5.14819 

Seeded Value 0.787300 5.11796 0.991989 5.14819 

 

Considering the unconstrained space S-metric results, in all cases minus one (3rd 

attainment surface of multi-point receiver case at 40000 evaluations: 14400.8746 < 

14401.7005), the no-seeded strategy achieves a better (higher) hypervolume. The 

introduced bias towards the optimum may be detrimental to the evolution. In the 

constrained space, there are manifested two opposite behaviors: in case of the single-

point receiver runs, the seeded approach is better in all circumstances over the no-

seeded strategy; but in the multi-point receiver case, the no-seeded approach is better 

in all circumstances over the seeded strategy. That is an indicator of how this multi-

point receiver problem has a different landscape than the single-point receiver one.  



5.2 Single-point versus Multi-point Receiver Cases 

The accumulated optimum non-dominated solutions are represented in Figures 2 and 

3 in search space, showing independently the single-point (crosses) and multi-point 

(circles) receiver cases. We have focused on the left functional search space part, 

because it is the region of interest for the designer. In this multi-point receiver 

problem, only the average of F1 is plotted for clarity.  

Seven designs (1 to 7 in the single-receiver and 1’ to 7’ in the case of the multi-

receiver) have been chosen along the decision-maker region of interest. They have 

been marked in the non-dominated front in Figure 3 and their shape designs are 

represented in Figure 4 (single-receiver) and Figure 5 (multi-receiver). The numerical 

values of their fitness functions and design variables are shown in Table 4 (single-

receiver) and Table 5 (multi-receiver). The single-point receiver front dominates the 

multi-point receiver front, as can be seen in Figure 3. The need of a robust behaviour 

when considering various receiver locations implies higher average values of the 

fitting of the ILref curve. In Table 6 the values of F1 corresponding to the three 

receiver points are represented for the fourteen designs. In Table 6, we observe in 

detail the best F1 solutions of both approaches: Design 1 (D1) and Design 1’ (D1’). 

D1 has the best F1 value in receiver point 2 (distance to the barrier base = 50m.), but 

an F1 average of 1.036, which is worse than the best value of D1’ (0.991989). By the 

other hand, the value of F1 at receiver 2 of D1’ is worse (0.847302 > 0.78730) than 

the value of D1.  

In Figure 6 both the Reference IL curve (corresponding to a 4.5 straight barrier 

with reflecting surfaces) and the best fitted solutions D1 and D1’ are represented for 

each receiver point. In the x axis the third octave centre spectra frequency is 

represented in Hertz in logarithmic scale. In the y axis the IL is represented in dbA 

units. As can be seen in the figures, the obtained designs fit accurately the searched IL 

reference curve, and their differences are really low. Therefore, that means that the 

same acoustic attenuation efficiency of a 4.5 meters effective height straight barrier 

can be achieved with a 3.0 meters effective height Y-shaped barrier with absorbent 

treatment in the inner surface of its arms. The multiobjective approach allows also to 

locate for each barrier length the barrier that fits most precisely the former noise 

attenuation capability (the lower the length, the worse the IL curve fit). 

 

Table 4. Fitness functions and transformed coordinates values corresponding to the seven 

selected optimum designs of the single-point receiver case. 

SinglePoint 

Receiver 

Design 

 

F1 

 

F2  

 

y-Coord1 

 

x-Coord2 

 

y-Coord2 

 

y-Coord3 

Design 1 0.7873 5.11796 0.972549 -0.04902 0.262745 1.0000 

Design 2 1.37468 4.93885 0.976471 0.013725 0.333333 1.0000 

Design 3 1.8395 4.71724 0.976471 0.045098 0.419608 1.0000 

Design 4 1.89081 4.09768 0.988235 -0.272549 0.737255 1.0000 

Design 5 2.551 3.95284 0.952941 -0.296078 0.733333 0.964706 

Design 6 5.24347 3.85126 0.94902 -0.272549 0.745098 0.937255 

Design 7 7.25369 3.73438 0.917647 -0.194118 0.72549 0.917647 



 

Table 5. Fitness functions and transformed coordinates values corresponding to the seven 

selected optimum designs of the multi-point receiver case. 

MultiPoint 

Receiver 

Design 

 

F1 

Average 

 

F2  

 

y-Coord1 

 

x-Coord2 

 

y-Coord2 

 

y-Coord3 

Design 1’ 0.991989 5.14819 0.968627 -0.041176 0.247059 1.0000 

Design 2’ 1.88108 4.87903 0.976471 0.288235 0.380392 1.0000 

Design 3’ 2.54528 4.63693 0.968627 0.02549 0.439216 0.996078 

Design 4’ 2.60501 4.01638 0.952941 -0.272549 0.701961 0.972549 

Design 5’ 3.15836 3.94612 0.941176 -0.268627 0.717647 0.968627 

Design 6’ 5.99898 3.85323 0.94902 -0.3.0000 0.74902 0.933333 

Design 7’ 7.57026 3.7397 0.909804 -0.217647 0.721569 0.921569 

Table 6. Fitness function F1 value at each receiver of the seven selected designs, average and 

variance corresponding to both the single and multi-point receiver case. (It is hignlighted in 

italic type the value used as search criterion in the optimization process) 

i: SinglePoint 

Rcptor Design 

i’: MultiPoint 

Rcptor Design 

 

F1 at 

Receiver 1 

 

F1 at 

Receiver 2  

 

F1 at 

Receiver 3 

 

F1 Average 

 

F1 Variance 

Design 1 1.061216              0.787300 1.260585 1.036367        0.037642 

Design 2 1.909043           1.374685 1.919018 1.734248        0.064660 

Design 3 2.163635        1.839499        2.304096 2.102410        0.037849 

Design 4 3.725551        1.890806        2.313488 2.643282        0.615430 

Design 5 5.594426        2.550998        3.511254 3.885559        1.613795 

Design 6 7.447395        5.243466        5.302573 5.997811        1.051228 

Design 7 7.952338        7.253690        8.081641 7.762557        0.132259 

Design 1’ 0.748688        0.847302        1.379976 0.991989        0.076888 

Design 2’ 2.074511        1.624732        1.943987  1.881077        0.035696 

Design 3’ 2.148006        2.402341        3.085492 2.545280        0.156696 

Design 4’ 3.007588        1.899501        2.907952 2.605014  0.250528 

Design 5’ 2.731014        2.577981        4.166087 3.158361        0.511659 

Design 6’ 7.334568        5.286570        5.375808 5.998982        0.893222 

Design 7’ 6.832536        7.135412        8.742823 7.570257        0.702745 

6 Conclusions 

Concerning the problem of multiobjective optimum design of noise barriers, a 

methodology for considering various receiver points has been introduced in this paper 

successfully, allowing to obtain robust optimum shape designs that fit various IL 

reference curves (each receiver represent a IL reference) simultaneously.   

Related to the initial population strategy, it has been shown that in certain cases 

(here the single-point receiver case) the seeded approach introducing one high quality 

solution design into the initial population, can be useful to obtain improved final 



fronts. Nevertheless, the reasons that justify when this strategy is profitable or not, 

should be further investigated.  

Taking into account the obtained results in terms of qualitative design information, 

it is remarkable that introducing the robust design methodology does not lead to new 

shape designs, being only slight variations of coordinates along the non-dominated 

front respect the single-point receiver optimization designs. 

 

 

Fig. 2. Non-Dominated final accumulated optimum front function evaluations, including both 

single-point (crosses) and multi-point (circles) receiver cases. The total front (2a, left) and 

zoomed left portion (2b, right) are shown. F1 in x-axis and F2 in y-axis 

 

 

Fig. 3. Zoomed portions (3a, left) and (3b, right) of the non-dominated final accumulated 

optimum front function evaluations, including the numbering of seven selected designs for both 

single-point (crosses) and multi-point (circles) receiver cases. F1 in x-axis and F2 in y-axis 

 



 

Fig. 4. Shapes of the 7 selected designs, from 1 (left) to 7 (right), single-point receiver case. 

 



 

Fig. 5. Shapes of the 7 selected designs, from 1 (left) to 7 (right), multi-point receiver case. 

 



 

 

Fig. 6. Insertion loss (IL) in the third octave band centre frequency of barrier design (square) 

and reference (crossed lines). From left to right and up to down, the first three graphics include 

the best single-point design and the last three graphics the best multi-point design in terms of 

F1, being the reference curves those corresponding to receiver points 1, 2 and 3 respectively in 

each case of the 4.5-height straight barrier. (Frequencies (Hz) in log-scale in x-axis and IL 

values (dbA) in y-axis)  
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