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| Introduction

hape optimization has been performed in recent years applied to various fields of
omputational mechanics, such as aeronautics or solid mechanics using evolutionary
flgorithms [4,5]. Automatically generated optimum designs are possible by using
oupled evolutionary computation with accurate numerical modeling.
Noise barriers are widely used for environmental protection in the boundaries of
high traffic roads, airports, etc, in the vicinity of population nucleus in order to reduce
- the noise impact. Here we perform shape optimum design of Y-shape noise barriers
- using the Boundary Element Method (BEM) [9] to model the sound propagation and
"NSGA-II [7] for optimization. The aim is to improve the design shape of noise
" barriers achieving simultaneously higher noise attenuation and also minimizing the
cost. The barrier length is considered as representative of the raw material cost and its
minimization also leads to limiting its environmental impact.

The paper describes in the second section the acoustic attenuation modeling using
BEM, following with the Y-shaped noise barrier optimum design methodology and
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Abstract. Multiobjective shape design of acoustic attenuation barriers is
handled using a boundary element method modeling and evolutionary
algorithms. Noise barriers are widely used for environmental protection near
population nucleus in order to reduce the noise impact. The minimization of the
acoustic pressure and the minimization of the cost of the barrier -considering its
total length- are taken into account. First, a single receiver point is considered;
then the case of multiple receiver locations is introduced, searching for a single
robust shape design where the acoustic attenuation is minimized simultaneously
in different locations using probabilistic dominance relation. The case of Y-
shaped barriers with upper absorbing surface is presented here. Results include
a comparative between the strategy of introducing a single objective optimum
in the initial multiobjective population (seeded approach) and the standard
approach. The methodology is capable to provide improved robust noise barrier
designs successfully.

Keywords: Engineering Design, Evolutionary Multiobjective Optimization,
Noise Barriers, Acoustic Attenuation, Uncertainty, Computational Acoustics.

1 Introduction

Shape optimization has been performed in recent years applied to various fields of
computational mechanics, such as aeronautics or solid mechanics using evolutionary
algorithms [4,5]. Automatically generated optimum designs are possible by using
coupled evolutionary computation with accurate numerical modeling.

Noise barriers are widely used for environmental protection in the boundaries of
high traffic roads, airports, etc, in the vicinity of population nucleus in order to reduce
the noise impact. Here we perform shape optimum design of Y-shape noise barriers
using the Boundary Element Method (BEM) [9] to model the sound propagation and
NSGA-II [7] for optimization. The aim is to improve the design shape of noise
barriers achieving simultaneously higher noise attenuation and also minimizing the
cost. The barrier length is considered as representative of the raw material cost and its
minimization also leads to limiting its environmental impact.

The paper describes in the second section the acoustic attenuation modeling using
BEM, following with the Y-shaped noise barrier optimum design methodology and



problem description, test case, results and discussion. Finally it ends with the
conclusions and references.

2 Noise Barriers Acoustic Attenuation Modelling

Sound propagation calculation can be performed efficiently and successfully with the
Boundary Element Method (BEM). The main advantages of BEM [9] over other
methods based on a geometrical theory of diffraction approach are its flexibility
(arbitrary shapes and surface acoustic properties can be accurately represented) and
accuracy (a correct solution of the governing equations of acoustics to any required
accuracy can be produced providing a boundary element size with small enough
fraction of a wavelength). Nowadays, both BEM and the Finite Element Method are
the most extended state of the art discretization methods in the computational
acoustics field [26]. Concretely, to estimate the efficiency of noise barriers with
complex shapes, the BEM has been used from the 80s [6,17,23] and it is still a field of
research interest. In recent years, design of noise barriers has been taken into account
using BEM, see e.g. [24].

The integral equation for a boundary point i, to be solved numerically by BEM, can
be written as:

*®

CiPi=Po IFb n +ikf,p |pdl 1)
where:

p: acoustic pressure field on the barrier surface (13) of generic admittance £,.

p: half-space fundamental solution. Acoustic pressure field due to a source at
collocation point i over a plane with admittance S, (ground surface). This
fundamental solution only requires the discretization of the barrier boundary (/). For
perfectly reflecting surfaces (barrier or ground), S=0. If the surface is absorbent, the
evaluation of S is obtained from the complex admittance of Delany and Bazley [8]
knowing the covering material thickness and its air flow resistivity.

c;: the local free term at collocation point i: ¢; = 68/ 2z, where @ is the angle
subtended by the tangents to the boundary at this point (rads). ¢; =0.5 for smooth
boundaries.

P, : half-space fundamental solution at problem source due to collocation at point i.

k = w/c is the wave number (c: sound wave velocity, w: angular frequency) and i the
imaginary unit.

The numerical solution of Eq. 1 is possible after a discretization process. A linear
system of equations is obtained from this process and lead to values of acoustic
pressure over the barrier boundary. The BEM code in this paper uses quadratic
elements with three nodal points. For more details about the used model, see [21][22].



3 Y-Noise Barriers Shape Design Optimization

In recent years, noise barrier optimum design has been solved using evolutionary
computation. Some works related with single objective optimization are [1,3,10,14].

The simultaneous minimization of two conflicting objectives corresponding to a
noise barrier design is performed in this paper. First, a fitness function related with
the increase of the acoustic attenuation of the barrier. Concretely, the first fitness
function which has to be minimized is:

NFreq

Fl= (IL =18 )2
Zj: J J @)

where:
IL; : insertion loss in the third octave band centre frequency for the Y-barrier profile
evaluated. Being the insertion loss (IL), defined as stated in Equation 3 (being dBA
the units of IL):
P S
IL =-20log . dBA

B

3

and calculated at one-third octave band spectra, where Py and Py are the acoustic
pressure at the receiver with and without the presence of the barrier respectively. This
parameter is an accepted estimation of the acoustic efficiency of the analyzed profile.
IL%: insertion loss reference curve in the third octave band centre frequency. When
choosing a reference with high IL values, a high efficient attenuation barrier fitting is
searched.

The optimum monocriteria design using this first fitness function was previously
described in Greiner et al. [14]. It solves an inverse problem, where the objective IL
curve at certain frequencies is known (IL®) and it allows to search for the
corresponding barrier design whose IL curve fits ILX. In [14] was shown the
capability to increase a certain percentage the acoustic efficiency of a certain Y-shape
barrier taken as original design.

The second fitness function (F2) to be minimized is the noise barrier length,
representative of the raw material cost. The higher its value, the easier the noise
attenuation capacity of the barrier, and therefore, the easier to fit the searched
reference curve. On the contrary, the lower its value, the lower the cost and better
environmental impact produced by the barrier.

Here, a multiobjective optimization noise barrier design with evolutionary
algorithms is introduced. Concretely, the procedure searches for the barrier shape
design which most fits IL® for each barrier length value.

The modelling approach included in the paper follows the test case implementation
of the previous related referenced works and is intentionally chosen because of the
simultaneous capability to cover the design space and also to reduce the number of
variables of the search optimization (could be interpreted as helping the search
including engineering knowledge). The Y-barrier shape is modeled using the two
extreme points of the arms and their join point. The x coordinate of the extreme points
is supposed fixed in the extremes of the barrier, where only y-coordinate varies. The



join point has variable x- and y-coordinates. The evolutionary algorithm variables are
set in a transformed space with perpendicular axis and square shape in contrast to the
geometric trapezoidal shape limited by b and the sloped line (see Fig. 1). So, four
design variables are required to define each shape (the x coordinate vary from -0.5 to
+0.5 and the three y coordinates vary from O to 1 in the transformed space). For more
details, see [14].

With this geometry and for a given source position, the boundary element program
calculates the acoustic pressure at the receiver position (r). A maximum element
length not bigger than A / 4 (being A the wavelength) is necessary to obtain an
appropriate accurate solution. With the acoustic pressure, the IL corresponding to
each frequency is obtained.

In case we want to consider not a single receiver location, but a certain zone where
to minimize the acoustical impact, then various receiver locations are needed and a
robust design is pretended, considering the minimization of function F1 at each
receiver. Therefore we deal not with a single value, but with a set of F1 values (a
distribution estimation). Uncertainty handling in evolutionary optimization has been
covered in recent years as a growing field of interest, see e.g. [2, 11, 19]. We follow
here the proposal of Teich [25], including the probabilistic dominance relation in the
NSGA-II as shown in [20]. So, the F1 objective is not a number, but a random
variable with values bounded by an interval evaluated as the average of the F1 values
at the receiver points plus and minus their typical deviation.

4 Test Case
h (effective height)
,’\ /
T receiver
= o
source -

b
| ‘ | ' |

Fig. 1. Problem topology representation.

The parameters considered in the test case used in the following experiments are
according to Fig. 1: b=1m. and d=10m. (noise source distance to the barrier base) We
will compare the single-point and multi-point receiver cases. In case of a single
receiver, r= 50m. In case of multiple receivers, three receiver positions are taken into
account (r=25, 50 and 100m., respectively). The ILref curve is obtained from a
straight barrier of 4.5 m height with reflecting surfaces, versus the maximum effective
height allowed of our Y-shaped designs of 3.0 m. We will consider only reflecting
surfaces, with the exception of the upper boundary of the design (inner surfaces of the



arms), which are absorbing surfaces. A thickness of 10 cm and an air flow resistivity
of 20000 are considered for the calculations described in section 2. A total of 13
frequencies at one-third octave centre band spectra frequency are evaluated: 100, 125,
160, 200, 250, 315, 400, 500, 630, 800, 1000, 1250 and 1600 Hz. The CPU time cost
of one F1 fitness function evaluation is 12 seconds in one Pentium IV-3GHz
processor.

5 Results and Discussion

Twelve independent runs of the evolutionary optimization design were executed in
each case. A population size of 100 individuals and 3% mutation rate were used in a
Gray coded [27] NSGA-II algorithm with uniform crossover and probabilistic
dominance relation (0=0.5).

Two cases are analyzed: 1. The single point receiver case. 2. The multi-point
receiver case. Each one has been solved comparing two different initial population
strategies: a) A seeded approach, where a solution of high quality is inserted into the
initial population; e.g., see [15]. b) The standard no-seeded initial random population
approach.

5.1 About the initial Population Strategy

The inserted high-quality design is obtained performing a single-objective steady-
state evolutionary algorithm optimization on F1. Each of the twelve independent runs
obtained the same final value, which will be considered as the optimum in terms of
F1. The number of evaluations required to reach the optimum for each run is shown in
Table 1. The average values in obtaining the optimum for the single-point and multi-
point receiver cases are 4346 and 4526 function evaluations. Since the average values
computed are principally influenced by the greatest values of Table 1, if we delete the
best and worst values, avoiding the excessive influence of extremes, then the average
values are 4005 and 3053, respectively; showing in average that the multi-point
receiver case needs less function evaluations.

Table 1. Number of evaluations required to reach the optimum value in the single objective
optimization (F1) and average (in italic type)

Single-Point 3786 | 6050 | 3806 | 4164 | 2020 3212 | Average
Receiver 4706 | 2904 | 10080 | 4240 | 3758 3428 4346
Multi-Point 2826 | 4606 | 3044 | 21844 | 2970 2344 | Average
Receiver 2044 | 3790 | 2392 | 1934 | 3760 2758 4526

In contrast, the best values in terms of F1 obtained after 45000 fitness function
evaluations with the multiobjective no-seeded search are shown in Table 3: Only one
out of 24 runs were capable to achieve this F1 best solution design.

To compare the outcome of the whole front, we will evaluate the S-metric
(hypervolume, originally proposed by Zitzler [28]) of various attainment surfaces.



Concretely, we use the S-metric proposal of Fonseca et al. [12]'. The attainment
surface concept in multiobjective optimization was introduced in [13,16] and we use
here the approach suggested in Knowles [18]%.

Table 2. S-Metric (Hypervolume) Results, with Reference Point (2000, 9), including the
attainment surfaces 1, 3, 5 and 7 over 12. The constrained space results consider only solutions
with F2 values greater than 3.6 m.

S Metric S Metric
(Unconstrained Space) (Constrained Space)
Initial Population Single Point Multi Point Single Point Multi Point
Strategy — Receiver Receiver Receiver Receiver
Number of
Evaluations Attainment Attainment Attainment Attainment
Surface 1 Surface 1 Surface 1 Surface |

Noseed - 15000 | 14420.7833 [ 14412.6969 10790.7287 10789.0082
Noseed - 30000 | 14425.8523 | 14421.1657 10790.9215 10789.1444
Noseed - 45000 [ 14428.0118 | 14423.7072 10790.3783 10790.4215
Seed - 10000 14407.9250 [ 14406.2951 10791.8617 10788.3595
Seed - 25000 14417.2164 | 14420.7298 10792.5499 10788.7074
Seed - 40000 14420.7381 [ 14423.1665 10792.6384 10788.7788

Attainment Attainment Attainment Attainment
Surface 3 Surface 3 Surface 3 Surface 3

Noseed - 15000 [ 14394.8957 | 14392.7734 10790.3061 10788.6518
Noseed - 30000 | 14402.1018 | 14397.0153 10790.6493 10788.9019
Noseed - 45000 | 14407.4146 | 14400.8746 10790.2065 10790.2490
Seed - 10000 14390.6412 | 14385.8869 10791.4474 10788.0735
Seed - 25000 14398.1735 | 14396.3221 10792.2399 10788.4565
Seed - 40000 14400.7514 | 14401.7005 10792.4660 10788.6195

Attainment Attainment Attainment Attainment
Surface 5 Surface 5 Surface 5 Surface 5

Noseed - 15000 | 14382.4308 | 14381.0581 10789.5308 10788.2375
Noseed - 30000 | 14387.7540 | 14385.4327 10790.4415 10788.7214
Noseed - 45000 | 14391.4587 | 14387.9532 10790.0582 10790.0954
Seed - 10000 14379.4652 | 14373.8816 10790.7003 10787.8379
Seed - 25000 14386.4227 | 14382.8896 10792.0495 10788.2732
Seed - 40000 14388.7318 | 14386.0760 10792.2480 10788.4440

Attainment Attainment Attainment Attainment
Surface 7 Surface 7 Surface 7 Surface 7

Noseed - 15000 | 14371.1840 | 14370.0224 10788.7894 10787.9192
Noseed - 30000 | 14376.9554 [ 14375.0176 10790.2124 10788.5177
Noseed - 45000 | 14379.5126 | 14376.3961 10789.8960 10789.8911
Seed - 10000 14368.6691 | 14362.9460 10790.4835 10787.4946
Seed - 25000 14374.9322 | 14372.3565 10791.9008 10788.0779
Seed - 40000 14378.1628 | 14374.9925 10792.0855 10788.2863

! Source code available at: http://sbe.napier.ac.uk/~manuel/hypervolume

% Source code available at: http://dbkgroup.org/knowles/plot_attainments



We will consider four attainment surfaces, 1 (100%), 3 (83%), 5 (67%) and 7
(50%) out of 12 (total number of independent runs per case), and evaluate its
hypervolume after 15000, 30000 and 45000 fitness evaluations in case of no-seeded
strategy and 10000, 25000 and 40000 fitness evaluations in case of seeded strategy (a
fair comparison to take into account the cost of the included solution). As reference
point in S-metric calculation, a point sufficiently high has been selected, whose
coordinate values of F1 and F2 are respectively, 2000 and 9. In the multi-point
receiver case, the average of F1 has been considered for hypervolume calculation.
Results are shown in table 2. In this problem the decision maker region of interest is
located in the left part of the search space (low F1 values and high barrier length,
being the higher F1 values not useful). So, we have also evaluated the S-metric in a
constrained design space over a barrier length greater than 3.6 meters. The important
information of Table 2 has been put in bold style.

Table 3. Values of the best F1 solutions achieved each run in the standard no-seeded
population strategy

Single Point Receiver Multi Point Receiver

Best F1 Corresponding Best F1 Corresponding
value F2 value value F2 value
Run Number 1 0.793816 5.11963 1.01041 5.16681
Run Number 2 0.789535 5.12731 0.99224 5.14777
Run Number 3 0.792179 5.13680 0.993157 5.15853
Run Number 4 0.792731 5.13644 0.99390 5.15735
Run Number 5 0.815023 5.16626 0.991989 5.14819
Run Number 6 0.830437 5.13460 1.00177 5.15647
Run Number 7 0.963581 5.18668 1.00676 5.17805
Run Number 8 0.796091 5.15574 1.00847 5.17743
Run Number 9 0.787557 5.11747 1.01499 5.15646
Run Number 10 | 0.796999 5.16681 0.994803 5.13744
Run Number 11 | 0.792993 5.09903 0.994803 5.13744
Run Number 12 | 0.794859 5.14713 1.00739 5.11768
Best Value 0.787557 5.11747 0.991989 5.14819
Seeded Value 0.787300 5.11796 0.991989 5.14819

Considering the unconstrained space S-metric results, in all cases minus one (3rd
attainment surface of multi-point receiver case at 40000 evaluations: 14400.8746 <
14401.7005), the no-seeded strategy achieves a better (higher) hypervolume. The
introduced bias towards the optimum may be detrimental to the evolution. In the
constrained space, there are manifested two opposite behaviors: in case of the single-
point receiver runs, the seeded approach is better in all circumstances over the no-
seeded strategy; but in the multi-point receiver case, the no-seeded approach is better
in all circumstances over the seeded strategy. That is an indicator of how this multi-
point receiver problem has a different landscape than the single-point receiver one.



5.2 Single-point versus Multi-point Receiver Cases

The accumulated optimum non-dominated solutions are represented in Figures 2 and
3 in search space, showing independently the single-point (crosses) and multi-point
(circles) receiver cases. We have focused on the left functional search space part,
because it is the region of interest for the designer. In this multi-point receiver
problem, only the average of F1 is plotted for clarity.

Seven designs (1 to 7 in the single-receiver and 1’ to 7’ in the case of the multi-
receiver) have been chosen along the decision-maker region of interest. They have
been marked in the non-dominated front in Figure 3 and their shape designs are
represented in Figure 4 (single-receiver) and Figure 5 (multi-receiver). The numerical
values of their fitness functions and design variables are shown in Table 4 (single-
receiver) and Table 5 (multi-receiver). The single-point receiver front dominates the
multi-point receiver front, as can be seen in Figure 3. The need of a robust behaviour
when considering various receiver locations implies higher average values of the
fitting of the ILref curve. In Table 6 the values of F1 corresponding to the three
receiver points are represented for the fourteen designs. In Table 6, we observe in
detail the best F1 solutions of both approaches: Design 1 (D1) and Design 1’ (D1°).
D1 has the best F1 value in receiver point 2 (distance to the barrier base = 50m.), but
an F1 average of 1.036, which is worse than the best value of D1’ (0.991989). By the
other hand, the value of F1 at receiver 2 of D1’ is worse (0.847302 > (0.78730) than
the value of D1.

In Figure 6 both the Reference IL curve (corresponding to a 4.5 straight barrier
with reflecting surfaces) and the best fitted solutions D1 and D1’ are represented for
each receiver point. In the x axis the third octave centre spectra frequency is
represented in Hertz in logarithmic scale. In the y axis the IL is represented in dbA
units. As can be seen in the figures, the obtained designs fit accurately the searched IL
reference curve, and their differences are really low. Therefore, that means that the
same acoustic attenuation efficiency of a 4.5 meters effective height straight barrier
can be achieved with a 3.0 meters effective height Y-shaped barrier with absorbent
treatment in the inner surface of its arms. The multiobjective approach allows also to
locate for each barrier length the barrier that fits most precisely the former noise
attenuation capability (the lower the length, the worse the IL curve fit).

Table 4. Fitness functions and transformed coordinates values corresponding to the seven
selected optimum designs of the single-point receiver case.

SinglePoint
Receiver F1 F2 y-Coordl x-Coord2 y-Coord2 | y-Coord3
Design

Design 1 0.7873 5.11796 | 0.972549 -0.04902 0.262745 1.0000

Design 2 1.37468 | 4.93885 | 0.976471 0.013725 0.333333 1.0000

Design 3 1.8395 4.71724 | 0.976471 0.045098 0.419608 1.0000
Design 4 1.89081 4.09768 | 0.988235 | -0.272549 | 0.737255 1.0000
Design 5 2.551 3.95284 | 0.952941 -0.296078 | 0.733333 | 0.964706

Design 6 5.24347 3.85126 0.94902 -0.272549 | 0.745098 0.937255

Design 7 7.25369 3.73438 0.917647 -0.194118 0.72549 0.917647




Table 5. Fitness functions and transformed coordinates values corresponding to the seven
selected optimum designs of the multi-point receiver case.

MultiPoint
Receiver F1 F2 y-Coord1 x-Coord2 y-Coord2 | y-Coord3
Design Average

Design 1’ 0.991989 | 5.14819 | 0.968627 | -0.041176 | 0.247059 1.0000

Design 2’ 1.88108 | 4.87903 | 0.976471 0.288235 0.380392 1.0000

Design 3’ 2.54528 | 4.63693 | 0.968627 0.02549 0.439216 | 0.996078

Design 4’ 2.60501 4.01638 | 0.952941 -0.272549 | 0.701961 0.972549

Design 5’ 3.15836 | 3.94612 | 0.941176 | -0.268627 | 0.717647 | 0.968627

Design 6 5.99898 | 3.85323 0.94902 -0.3.0000 0.74902 0.933333

Design 7’ 7.57026 3.7397 0.909804 | -0.217647 | 0.721569 | 0.921569

Table 6. Fitness function F1 value at each receiver of the seven selected designs, average and
variance corresponding to both the single and multi-point receiver case. (It is hignlighted in
italic type the value used as search criterion in the optimization process)

i: SinglePoint

Reptor Design F1 at F1 at F1 at F1 Average | F1 Variance
i": MultiPoint | Receiver 1 Receiver 2 Receiver 3

Rceptor Design

Design 1 1.061216 0.787300 1.260585 1.036367 0.037642
Design 2 1.909043 1.374685 1.919018 1.734248 0.064660
Design 3 2.163635 1.839499 2.304096 2.102410 0.037849
Design 4 3.725551 1.890806 2.313488 2.643282 0.615430
Design 5 5.594426 2.550998 3.511254 3.885559 1.613795
Design 6 7.447395 5.243466 5.302573 5.997811 1.051228
Design 7 7.952338 7.253690 8.081641 7.762557 0.132259
Design 1’ 0.748688 0.847302 1.379976 0.991989 0.076888
Design 2’ 2.074511 1.624732 1.943987 1.881077 0.035696
Design 3’ 2.148006 2.402341 3.085492 2.545280 0.156696
Design 4’ 3.007588 1.899501 2.907952 2.605014 0.250528
Design 5’ 2.731014 2.577981 4.166087 3.158361 0.511659
Design 6’ 7.334568 5.286570 5.375808 5.998982 0.893222
Design 7 6.832536 7.135412 8.742823 7.570257 0.702745

6 Conclusions

Concerning the problem of multiobjective optimum design of noise barriers, a
methodology for considering various receiver points has been introduced in this paper
successfully, allowing to obtain robust optimum shape designs that fit various IL
reference curves (each receiver represent a IL reference) simultaneously.

Related to the initial population strategy, it has been shown that in certain cases
(here the single-point receiver case) the seeded approach introducing one high quality
solution design into the initial population, can be useful to obtain improved final




fronts. Nevertheless, the reasons that justify when this strategy is profitable or not,
should be further investigated.

Taking into account the obtained results in terms of qualitative design information,
it is remarkable that introducing the robust design methodology does not lead to new
shape designs, being only slight variations of coordinates along the non-dominated
front respect the single-point receiver optimization designs.
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Fig. 2. Non-Dominated final accumulated optimum front function evaluations, including both
single-point (crosses) and multi-point (circles) receiver cases. The total front (2a, left) and
zoomed left portion (2b, right) are shown. F1 in x-axis and F2 in y-axis
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Fig. 3. Zoomed portions (3a, left) and (3b, right) of the non-dominated final accumulated
optimum front function evaluations, including the numbering of seven selected designs for both
single-point (crosses) and multi-point (circles) receiver cases. F1 in x-axis and F2 in y-axis
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Fig. 4. Shapes of the 7 selected designs, from 1 (left) to 7 (right), single-point receiver case.
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Fig. 5. Shapes of the 7 selected designs, from 1 (left) to 7 (right), multi-point receiver case.
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Fig. 6. Insertion loss (IL) in the third octave band centre frequency of barrier design (square)
and reference (crossed lines). From left to right and up to down, the first three graphics include
the best single-point design and the last three graphics the best multi-point design in terms of
F1, being the reference curves those corresponding to receiver points 1, 2 and 3 respectively in
each case of the 4.5-height straight barrier. (Frequencies (Hz) in log-scale in x-axis and IL
values (dbA) in y-axis)
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