

UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA

INSTITUTO UNIVERSITARIO EN SISTEMAS INTELIGENTES Y APLICACIONES NUMÉRICAS EN INGENIERÍA

Congreso de Métodos Numéricos en Ingeniería CMN 2013

ST16: Computational methods in acoustics and vibrations

Bilbao, 25 de junio de 2013

Optimización de diseños de pantallas acústicas de pequeño espesor mediante la implementación de la Formulación Dual del MEC

R. Toledo, J. J. Aznárez, O. Maeso, D. Greiner

Introducción

Introducción

ntroducción

- Estado del Arte
- rotocolo de Optimización
- Método de los Elementos de Contorno
- ²resentación del ²roblema
- Resultados
 - onclusiones
 - esarrollos

EJEMPLOS DE PANTALLAS ACÚSTICAS

Congress on Numerical Methods in Engineering – CNM 2013 June 25 – 28, 2013, Bilbao, Spain

Estado del arte

Estado del arte

Estado del arte

esarrollos

June 25 – 28, 2013, Bilbao, Spain

Protocolo de Optimización

0

Protocolo de Optimización

Protocolo de Optimización

El Método de los Elementos de Contorno

Introducción

Estado del Arte

Protocolo de Optimización

Método de los Elementos de Contorno

²resentación de ²roblema

Kesultados

onclusiones

esarrollos

PROBLEMÁTICA GEOMETRÍAS REALES

ACÚSTICA EXTERIOR VS ACÚSTICA INTERIOR

 Nuestros problemas son de acústica exterior (el aire es el dominio).

Figura 1.1: Problema de acústica exterior.

 Si el dominio es la pantalla, el problema es de acústica interior.

Figura 1.2: Problema de acústica interior.

FORMULACIÓN SINGULAR DEL MEC

- En acústica exterior pueden aparecer fenómenos de amplificación de las ondas sonoras a determinadas frecuencias (*resonancia acústica*).
- Estos fenómenos son inherentes al carácter matemático de la definición del problema exterior.
- Las frecuencias a las que aparecen estos fenómenos indeseables se denominan *frecuencias espurias*, y corresponden a las frecuencias de resonancia del problema interior.
- Estos valores de resonancia son los autovalores de las matrices H y G.

Congress on Numerical Methods in Engineering – CNM 2013 June 25 – 28, 2013, Bilbao, Spain

El Método de los Elementos de Contornos

Presentación del Problema

ntroducción

- Estado del Arte
- Protocolo de
 -)ptimización
- Método de los Elementos de

Presentación del Problema

Kesultados

onclusiones

esarrollos

DEFINICIÓN DEL PROBLEMA

- Superficie de la barrera y el suelo reflejantes ($\beta_s = \beta_p = 0$).
- Región factible marcada por una altura efectiva de h_{eff}=3 m y una proyección horizonatal d_p=1 m.
- Fuente a ras de suelo a d_s=10 m.
- 16 receptores en la zona de sombra de la pantalla, separados Δx e Δy.

POSICIONAMIENTO RECEPTORES

 Se estudian tres regiones en términos de cercanía a la barrera:

Región	d_s	$d_{\rm p}$	d_{r_1}	d_{r_2}	Δx	Δy
1			0.5	10	2	1
2	10	1	10.5	40	8	2
3			50.5	50	10	5

Congress on Numerical Methods in Engineering – CNM 2013

June 25 – 28, 2013, Bilbao, Spain

Presentación del Problema

Presentación del Problema

- Protocolo de Optimización
- Método de los Elementos de
- Presentación del <u>Problema</u>
- Kesultados
 - onclusiones

esarrollos

DISEÑOS OBJETO DE ESTUDIO

Congress on Numerical Methods in Engineering – CNM 2013

June 25 – 28, 2013, Bilbao, Spain

Introducción

²rotocolo de Optimización

Vétodo de los Elementos de

^Dresentación del Problema

Resultados

onclusiones

esarrollos

VALORES RESPECTO DE PANTALLA SIMPLE

Tabla 3: Eficacia acústica de los modelos analizados, expresada en dBA.

Región	Modelo	$L_{\rm c}({\rm m})$	$\Delta L_{\rm c}(m)$	$\mathrm{FA}_{\mathrm{mejor}}$	$\Delta FA_{\rm mejor}$
1	В	4.8052	+1.8052	21.3830	+6.8418
	А	5.8848	+2.8848	19.2943	+4.7531
	B^*	3.7398	+0.7398	17.4048	+2.8636
2	В	4.8050	+1.4805	17.4996	+4.0581
	А	5.8969	+2.8969	16.6120	+3.1705
	B^*	3.6790	+0.6790	13.4767	+0.0352
3	В	4.9896	+1.9896	16.2552	+3.4976
	А	5.8984	+2.8984	15.4795	+2.7219
	B*	3.6296	+0.6296	12.7967	+0.0391

Congress on Numerical Methods in Engineering – CNM 2013 June 25 – 28, 2013, Bilbao, Spain

Conclusiones

ntroducción

Estado del Arte

- rotocolo de
- Método de los Elementos de
- ontorno
- ⁻resentación del ^Droblema

Kesultados

esarrollos

- Se ha presentado un protocolo para la optimización de perfiles que posibilita la idealización de pantallas acústicas reales como geometrías de espesor nulo.
- Se han presentado dos modelos de perfiles de pantallas acústicas para validar el método.
- El rango de aplicabilidad del protocolo es amplio y permite estudiar diversas soluciones topológicas, incluidos aquellos diseños basados en geometrías curvas (curvas Bézier o curvas spline).
- El estudio de pantallas acústicas mediante la idealización de su perfil como espesor nulo facilita enormemente la comprobación de la validez topológica de los perfiles propuestos por el AG, permitiendo obtener diseños de pantallas que serían difíciles de estudiar de no ser por esta consideración.

Congress on Numerical Methods in Engineering – CNM 2013 June 25 – 28, 2013, Bilbao, Spain

Desarrollos en curso

June 25 - 28, 2013, Bilbao, Spain

Desarrollos en curso

Desarrollos futuros

UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA

INSTITUTO UNIVERSITARIO EN SISTEMAS INTELIGENTES Y APLICACIONES NUMÉRICAS EN INGENIERÍA

Congreso de Métodos Numéricos en Ingeniería CMN 2013

ST16: Computational methods in acoustics and vibrations

Bilbao, 25 de junio de 2013

Optimización de diseños de pantallas acústicas de pequeño espesor mediante la implementación de la Formulación Dual del MEC

R. Toledo, J. J. Aznárez, O. Maeso, D. Greiner

